Java性能调优:利用JMC进行性能分析

JMC, 即Java任务控制(Java Mission Control)是从Java77u40)和 Java的商业版本包括一项新的监控和控制特性

JMC 程序 (JDK_HOME\bin目录下会启动一个窗口程序,然后让我们选择对那进程进行监控,JMC打开性能日志后,

主要包括7部分性能报告,分别是一般信息、内存、代码、线程、I/O、系统、事件。其中,内存、代码、线程及I/O是系统分析的主要部分。

启动JMC,打开生成的JFR性能日志

1. 一般信息,如下图所示


图中, 堆使用量、CPU总体占用率、GC暂停时间是非常重要的三个指标

对于Java应用而言,GC暂停时间是最值得关注的指标。

 

2. 内存信息

2.1 通过内存信息,我们可以清晰的看到垃圾收集器的类型,垃圾收集的暂停时间,包括最短暂停时间、平均暂停时间、最长暂停时间,

以及更为重要的垃圾收集频率(垃圾收集的周期及STW时长)。

2.2 垃圾收集

垃圾收集的详细报告,详细描述了堆的回收信息,垃圾收集过程中的异常事件,此处不一一详述。

2.3 GC时间

详细描述GC时间相关的信息

2.4 GC配置

详细列出垃圾收集过程中,GC的配置信息,主要包括年轻代、老年代的GC类型,GC过程中的CPU状态及GC时间比率

 

3. 代码分析

 代码分析是Java性能分析重点,通过代码分析,我们可以清楚的知道系统运行时,哪些类及方法被高频率的调用

3.1 热点方法


 

通过查看热点方法调用栈,我们可以清晰的了解到系统的主要计算资源消耗情况。

我们举例说明,如上图中的ConcurrentHashMap的containKey方法及get方法,而两个方法都会执行计算hashcode的功能。当我们的应用出现先判断containKey,然后执行get方法时,我们可以省略containKey,这样可以省略一次hashcode的计算,可以节约计算资源。

3.2 调用树


 

通过调用树,我们能以模块化的方式直观的看到系统运行状态。

通过上图,我们得知99.9%的热点方法是运行程序,这非常符合我们的预期,大家可以逐层展开方法,详细分析方法。例如:在本例中,我们发现List与Map之间的性能差异非常大,同样数量级的执行次数,List性能相较于Map就很差,这也符合我们的认知范围。

 

4. 线程


 通过线程概述报告,我们可以得知CPU占用率的分布(系统占用率、应用程序+JVM占用率)和活动线程数,对于CPU占用率而言,应用程序应该占用99%的计算资源,而活动线程数应该控制在合理范围内(具体看应用)。

4.1 热点线程

热点线程一栏,详细列出了热点线程的数量及详情,通过详情,我们可以得知线程的执行情况。
 4.2 线程争用


 线程争用是解决应用性能最为关键的部分,在应用上线初期,我们可以通过解决线程争用初步实现系统性能的巨大提升。上图中的争用为GC导致,具体是由于使用G1时,设置的GC预期暂停时间过短导致的。

系统性能分析初期,我们可以首先定位线程争用的情况,可以初步达到性能的飞跃。

 

5. IO


 IO作为系统的基础指标,IO过高会导致系统性能急剧下降,避免过度打印日志和生成大文件可以避免系统IO过高导致的性能问题。

 

本文转载自

  • 原文作者:h254532699的博客
  • 原文链接:https://blog.csdn.net/h254532699/article/details/54342511
posted on 2018-08-01 16:55  朝雨忆轻尘  阅读(1379)  评论(0编辑  收藏  举报