JAVA NIO详解

前言

本篇主要讲解Java中的IO机制和网络通讯中处理高并发的NIO

分为两块:
第一块讲解多线程下的IO机制
第二块讲解如何在IO机制下优化CPU资源的浪费(New IO)

Echo服务器

单线程下的socket机制就不用我介绍了,不懂得可以去查阅下资料
那么多线程下,如果进行套接字的使用呢?
我们使用最简单的echo服务器来帮助大家理解

首先,来看下多线程下服务端和客户端的工作流程图:

clipboard.png

可以看到,多个客户端同时向服务端发送请求
服务端做出的措施是开启多个线程来匹配相对应的客户端
并且每个线程去独自完成他们的客户端请求

原理讲完了我们来看下是如何实现的
在这里我写了一个简单的服务器
用到了线程池的技术来创建线程(具体代码作用我已经加了注释):

public class MyServer {
        private static ExecutorService executorService = Executors.newCachedThreadPool();       //创建一个线程池
        private static class HandleMsg implements Runnable{         //一旦有新的客户端请求,创建这个线程进行处理
        Socket client;          //创建一个客户端
        public HandleMsg(Socket client){        //构造传参绑定
            this.client = client;
        }
        @Override
        public void run() {
            BufferedReader bufferedReader = null;       //创建字符缓存输入流
            PrintWriter printWriter = null;         //创建字符写入流
            try {
                bufferedReader = new BufferedReader(new InputStreamReader(client.getInputStream()));        //获取客户端的输入流
                printWriter = new PrintWriter(client.getOutputStream(),true);            //获取客户端的输出流,true是随时刷新
                String inputLine = null;
                long a = System.currentTimeMillis();
                while ((inputLine = bufferedReader.readLine())!=null){
                    printWriter.println(inputLine);
                }
                long b = System.currentTimeMillis();
                System.out.println("此线程花费了:"+(b-a)+"秒!");
            } catch (IOException e) {
                e.printStackTrace();
            }finally {
                try {
                    bufferedReader.close();
                    printWriter.close();
                    client.close();
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
        }
    }

    public static void main(String[] args) throws IOException {         //服务端的主线程是用来循环监听客户端请求
        ServerSocket server = new ServerSocket(8686);       //创建一个服务端且端口为8686
        Socket client = null;
        while (true){           //循环监听
            client = server.accept();       //服务端监听到一个客户端请求
            System.out.println(client.getRemoteSocketAddress()+"地址的客户端连接成功!");
            executorService.submit(new HandleMsg(client));      //将该客户端请求通过线程池放入HandlMsg线程中进行处理
        }
    }
}

上述代码中我们使用一个类编写了一个简单的echo服务器
在主线程中用死循环来开启端口监听

简单客户端

有了服务器,我们就可以对其进行访问,并且发送一些字符串数据
服务器的功能是返回这些字符串,并且打印出线程占用时间

下面来写个简单的客户端来响应服务端:

public class MyClient {
    public static void main(String[] args) throws IOException {
        Socket client = null;
        PrintWriter printWriter = null;
        BufferedReader bufferedReader = null;
        try {
            client = new Socket();
            client.connect(new InetSocketAddress("localhost",8686));
            printWriter = new PrintWriter(client.getOutputStream(),true);
            printWriter.println("hello");
            printWriter.flush();

            bufferedReader = new BufferedReader(new InputStreamReader(client.getInputStream()));            //读取服务器返回的信息并进行输出
            System.out.println("来自服务器的信息是:"+bufferedReader.readLine());
        } catch (IOException e) {
            e.printStackTrace();
        }finally {
            printWriter.close();
            bufferedReader.close();
            client.close();
        }
    }
}

代码中,我们用字符流发送了一个hello字符串过去,如果代码没问题
服务器会返回一个hello数据,并且打印出我们设置的日志信息

echo服务器结果展示

我们来运行:
1.打开server,开启循环监听:

clipboard.png

2.打开一个客户端:

clipboard.png

可以看到客户端打印出了返回结果

3.查看服务端日志:

clipboard.png

很好,一个简单的多线程套接字编程就实现了

但是试想一下:
如果一个客户端请求中,在IO写入到服务端过程中加入Sleep,
使每个请求占用服务端线程10秒
然后有大量的客户端请求,每个请求都占用那么长时间
那么服务端的并能能力就会大幅度下降
这并不是因为服务端有多少繁重的任务,而仅仅是因为服务线程在等待IO(因为accept,read,write都是阻塞式的)
让高速运行的CPU去等待及其低效的网络IO是非常不合算的行为

这时候该怎么办?

NIO

New IO成功的解决了上述问题,它是怎样解决的呢?
IO处理客户端请求的最小单位是线程
而NIO使用了比线程还小一级的单位:通道(Channel)
可以说,NIO中只需要一个线程就能完成所有接收,读,写等操作

要学习NIO,首先要理解它的三大核心
Selector,选择器
Buffer,缓冲区
Channel,通道

博主不才,画了张丑图给大家加深下印象 ^ . ^

clipboard.png

再给一张TCP下的NIO工作流程图(好难画的线条...)

clipboard.png

大家大致看懂就行,我们一步步来

Buffer

首先要知道什么是Buffer
在NIO中数据交互不再像IO机制那样使用流
而是使用Buffer(缓冲区)

博主觉得图才是最容易理解的
所以...

clipboard.png

可以看出Buffer在整个工作流程中的位置

buffer实际上是一个容器,一个连续数组,它通过几个变量来保存这个数据的当前位置状态:
1.capacity:容量,缓冲区能容纳元素的数量
2.position:当前位置,是缓冲区中下一次发生读取和写入操作的索引,当前位置通过大多数读写操作向前推进
3.limit:界限,是缓冲区中最后一个有效位置之后下一个位置的索引
如图:

clipboard.png

几个常用方法:

.flip()        //将limit设置为position,然后position重置为0,返回对缓冲区的引用
.clear()        //清空调用缓冲区并返回对缓冲区的引用

来点实际点的,上面图中的具体代码如下:

1.首先给Buffer分配空间,以字节为单位

ByteBuffer byteBuffer = ByteBuffer.allocate(1024);

创建一个ByteBuffer对象并且指定内存大小

2.向Buffer中写入数据:

1).数据从Channel到Buffer:channel.read(byteBuffer);
2).数据从Client到Buffer:byteBuffer.put(...);

3.从Buffer中读取数据:

1).数据从Buffer到Channel:channel.write(byteBuffer);
2).数据从Buffer到Server:byteBuffer.get(...);

Selector

选择器是NIO的核心,它是channel的管理者
通过执行select()阻塞方法,监听是否有channel准备好
一旦有数据可读,此方法的返回值是SelectionKey的数量

所以服务端通常会死循环执行select()方法,直到有channl准备就绪,然后开始工作
每个channel都会和Selector绑定一个事件,然后生成一个SelectionKey的对象
需要注意的是:
channel和Selector绑定时,channel必须是非阻塞模式
而FileChannel不能切换到非阻塞模式,因为它不是套接字通道,所以FileChannel不能和Selector绑定事件

在NIO中一共有四种事件:
1.SelectionKey.OP_CONNECT:连接事件
2.SelectionKey.OP_ACCEPT:接收事件
3.SelectionKey.OP_READ:读事件
4.SelectionKey.OP_WRITE:写事件

Channel

共有四种通道:
FileChannel:作用于IO文件流
DatagramChannel:作用于UDP协议
SocketChannel:作用于TCP协议
ServerSocketChannel:作用于TCP协议

本篇文章通过常用的TCP协议来讲解NIO

我们以ServerSocketChannel为例:

打开一个ServerSocketChannel通道

ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();

关闭ServerSocketChannel通道:

serverSocketChannel.close();

循环监听SocketChannel:

while(true){
    SocketChannel socketChannel = serverSocketChannel.accept();
    clientChannel.configureBlocking(false);
}

clientChannel.configureBlocking(false);语句是将此通道设置为非阻塞,也就是异步
自由控制阻塞或非阻塞便是NIO的特性之一

SelectionKey

SelectionKey是通道和选择器交互的核心组件
比如在SocketChannel上绑定一个Selector,并注册为连接事件:

SocketChannel clientChannel = SocketChannel.open();
clientChannel.configureBlocking(false);
clientChannel.connect(new InetSocketAddress(port));
clientChannel.register(selector, SelectionKey.OP_CONNECT);

核心在register()方法,它返回一个SelectionKey对象
来检测channel事件是那种事件可以使用以下方法:

selectionKey.isAcceptable();
selectionKey.isConnectable();
selectionKey.isReadable();
selectionKey.isWritable();

服务端便是通过这些方法 在轮询中执行相对应操作

当然通过Channel与Selector绑定的key也可以反过来拿到他们

Channel  channel  = selectionKey.channel();
Selector selector = selectionKey.selector();

在Channel上注册事件时,我们也可以顺带绑定一个Buffer:

clientChannel.register(key.selector(), SelectionKey.OP_READ,ByteBuffer.allocateDirect(1024));

或者绑定一个Object:

selectionKey.attach(Object);
Object anthorObj = selectionKey.attachment();

NIO的TCP服务端

讲了这么多,都是理论
我们来看下最简单也是最核心的代码(加那么多注释很不优雅,但方便大家看懂):

package cn.blog.test.NioTest;


import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.*;
import java.nio.charset.Charset;
import java.util.Iterator;
import java.util.Set;


public class MyNioServer {
    private Selector selector;          //创建一个选择器
    private final static int port = 8686;
    private final static int BUF_SIZE = 10240;

    private void initServer() throws IOException {
        //创建通道管理器对象selector
        this.selector=Selector.open();

        //创建一个通道对象channel
        ServerSocketChannel channel = ServerSocketChannel.open();
        channel.configureBlocking(false);       //将通道设置为非阻塞
        channel.socket().bind(new InetSocketAddress(port));       //将通道绑定在8686端口

        //将上述的通道管理器和通道绑定,并为该通道注册OP_ACCEPT事件
        //注册事件后,当该事件到达时,selector.select()会返回(一个key),如果该事件没到达selector.select()会一直阻塞
        SelectionKey selectionKey = channel.register(selector,SelectionKey.OP_ACCEPT);

        while (true){       //轮询
            selector.select();          //这是一个阻塞方法,一直等待直到有数据可读,返回值是key的数量(可以有多个)
            Set keys = selector.selectedKeys();         //如果channel有数据了,将生成的key访入keys集合中
            Iterator iterator = keys.iterator();        //得到这个keys集合的迭代器
            while (iterator.hasNext()){             //使用迭代器遍历集合
                SelectionKey key = (SelectionKey) iterator.next();       //得到集合中的一个key实例
                iterator.remove();          //拿到当前key实例之后记得在迭代器中将这个元素删除,非常重要,否则会出错
                if (key.isAcceptable()){         //判断当前key所代表的channel是否在Acceptable状态,如果是就进行接收
                    doAccept(key);
                }else if (key.isReadable()){
                    doRead(key);
                }else if (key.isWritable() && key.isValid()){
                    doWrite(key);
                }else if (key.isConnectable()){
                    System.out.println("连接成功!");
                }
            }
        }
    }

    public void doAccept(SelectionKey key) throws IOException {
        ServerSocketChannel serverChannel = (ServerSocketChannel) key.channel();
        System.out.println("ServerSocketChannel正在循环监听");
        SocketChannel clientChannel = serverChannel.accept();
        clientChannel.configureBlocking(false);
        clientChannel.register(key.selector(),SelectionKey.OP_READ);
    }

    public void doRead(SelectionKey key) throws IOException {
        SocketChannel clientChannel = (SocketChannel) key.channel();
        ByteBuffer byteBuffer = ByteBuffer.allocate(BUF_SIZE);
        long bytesRead = clientChannel.read(byteBuffer);
        while (bytesRead>0){
            byteBuffer.flip();
            byte[] data = byteBuffer.array();
            String info = new String(data).trim();
            System.out.println("从客户端发送过来的消息是:"+info);
            byteBuffer.clear();
            bytesRead = clientChannel.read(byteBuffer);
        }
        if (bytesRead==-1){
            clientChannel.close();
        }
    }

    public void doWrite(SelectionKey key) throws IOException {
        ByteBuffer byteBuffer = ByteBuffer.allocate(BUF_SIZE);
        byteBuffer.flip();
        SocketChannel clientChannel = (SocketChannel) key.channel();
        while (byteBuffer.hasRemaining()){
            clientChannel.write(byteBuffer);
        }
        byteBuffer.compact();
    }

    public static void main(String[] args) throws IOException {
        MyNioServer myNioServer = new MyNioServer();
        myNioServer.initServer();
    }
}

我打印了监听channel,告诉大家ServerSocketChannel是在什么时候开始运行的
如果配合NIO客户端的debug,就能很清楚的发现,进入select()轮询前
虽然已经有了ACCEPT事件的KEY,但select()默认并不会去调用
而是要等待有其它感兴趣事件被select()捕获之后,才会去调用ACCEPT的SelectionKey
这时候ServerSocketChannel才开始进行循环监听

也就是说一个Selector中,始终保持着ServerSocketChannel的运行
serverChannel.accept();真正做到了异步(在initServer方法中的channel.configureBlocking(false);)
如果没有接受到connect,会返回一个null
如果成功连接了一个SocketChannel,则此SocketChannel会注册写入(READ)事件
并且设置为异步

NIO的TCP客户端

有服务端必定有客户端
其实如果能完全理解了服务端
客户端的代码大同小异

package cn.blog.test.NioTest;


import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.SelectionKey;
import java.nio.channels.Selector;
import java.nio.channels.SocketChannel;
import java.util.Iterator;

public class MyNioClient {
    private Selector selector;          //创建一个选择器
    private final static int port = 8686;
    private final static int BUF_SIZE = 10240;
    private static ByteBuffer byteBuffer = ByteBuffer.allocate(BUF_SIZE);

    private void  initClient() throws IOException {
        this.selector = Selector.open();
        SocketChannel clientChannel = SocketChannel.open();
        clientChannel.configureBlocking(false);
        clientChannel.connect(new InetSocketAddress(port));
        clientChannel.register(selector, SelectionKey.OP_CONNECT);
        while (true){
            selector.select();
            Iterator<SelectionKey> iterator = selector.selectedKeys().iterator();
            while (iterator.hasNext()){
                SelectionKey key = iterator.next();
                iterator.remove();
                if (key.isConnectable()){
                    doConnect(key);
                }else if (key.isReadable()){
                    doRead(key);
                }
            }
        }
    }

    public void doConnect(SelectionKey key) throws IOException {
        SocketChannel clientChannel = (SocketChannel) key.channel();
        if (clientChannel.isConnectionPending()){
            clientChannel.finishConnect();
        }
        clientChannel.configureBlocking(false);
        String info = "服务端你好!!";
        byteBuffer.clear();
        byteBuffer.put(info.getBytes("UTF-8"));
        byteBuffer.flip();
        clientChannel.write(byteBuffer);
        //clientChannel.register(key.selector(),SelectionKey.OP_READ);
        clientChannel.close();
    }

    public void doRead(SelectionKey key) throws IOException {
        SocketChannel clientChannel = (SocketChannel) key.channel();
        clientChannel.read(byteBuffer);
        byte[] data = byteBuffer.array();
        String msg = new String(data).trim();
        System.out.println("服务端发送消息:"+msg);
        clientChannel.close();
        key.selector().close();
    }

    public static void main(String[] args) throws IOException {
        MyNioClient myNioClient = new MyNioClient();
        myNioClient.initClient();
    }
}

输出结果

这里我打开一个服务端,两个客户端:

clipboard.png

接下来,你可以试下同时打开一千个客户端,只要你的CPU够给力,服务端就不可能因为阻塞而降低性能

以上便是Java NIO的基础详解
谢谢阅读和关注~

posted @ 2018-06-14 13:31  西凤楼  阅读(239)  评论(0编辑  收藏  举报
如果,您认为阅读这篇博客让您有些收获, 如果,您希望更容易地发现我的新博客,不妨关注一下。因为,我的写作热情也离不开您的肯定支持。 感谢您的阅读,如果您对我的博客所讲述的内容有兴趣,请继续关注我的后续博客。 因为有小孩,兼职卖书,路过的朋友有需要低价购买图书、点读笔、纸尿裤等资源的,可扫最上方二维码,质量有保证,价格很美丽,欢迎咨询!