1. torch.no_grad
(1) 用法
with torch.no_grad():
具体操作
(2) 说明
上例的“具体操作”中均不更新梯度,这样可以节约计算时间和内存。一般用于验证或者测试阶段。
2. param.requires_grad
(1) 用法
p.requires_grad=False
(2) 说明
一般用于将某一层设置为不自动更新梯度,以避免训练模型时对该层调参。
3. model.eval
(1) 用法
model.eval()
具体操作
(2) 说明
模型支持train模式和eval模式,在使用模型之前调用model.eval(),进入eval评估模型,它将改变forward,如禁止dropout,并用统计数据做batch norm。因此,有时train模式和eval模式模型计算的结果不同。