Keras split train test set when using ImageDataGenerator
Keras split train test set when using ImageDataGenerator
I have a single directory which contains sub-folders (according to labels) of images. I want to split this data into train and test set while using ImageDataGenerator in Keras. Although model.fit() in keras has argument validation_split for specifying the split, I could not find the same for model.fit_generator(). How to do it ?
train_datagen = ImageDataGenerator(rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=32,
class_mode='binary')
model.fit_generator(
train_generator,
samples_per_epoch=nb_train_samples,
nb_epoch=nb_epoch,
validation_data=??,
nb_val_samples=nb_validation_samples)
I don't have separate directory for validation data, need to split it from the training data
-----
Keras has now added Train / validation split from a single directory using ImageDataGenerator:
train_datagen = ImageDataGenerator(rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
validation_split=0.2) # set validation split
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='binary',
subset='training') # set as training data
validation_generator = train_datagen.flow_from_directory(
train_data_dir, # same directory as training data
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='binary',
subset='validation') # set as validation data
model.fit_generator(
train_generator,
steps_per_epoch = train_generator.samples // batch_size,
validation_data = validation_generator,
validation_steps = validation_generator.samples // batch_size,
epochs = nb_epochs)
https://keras.io/preprocessing/image/
keras.preprocessing.image.ImageDataGenerator(featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, zca_epsilon=1e-06, rotation_range=0, width_shift_range=0.0, height_shift_range=0.0, brightness_range=None, shear_range=0.0, zoom_range=0.0, channel_shift_range=0.0, fill_mode='nearest', cval=0.0, horizontal_flip=False, vertical_flip=False, rescale=None, preprocessing_function=None, data_format='channels_last', validation_split=0.0, interpolation_order=1, dtype='float32')
Does the validation_generator also augment data? After reading the comments from github.com/keras-team/keras/issues/5862 it seems like it does. – bitnahian May 9 at 13:54
- How to remove the Image Augment for validation_generator? – northtree Dec 16 at 0:10
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· 单线程的Redis速度为什么快?