tensorflow 预训练模型列表
tensorflow 预训练模型列表
https://github.com/tensorflow/models/tree/master/research/slim
Pre-trained Models
Neural nets work best when they have many parameters, making them powerful function approximators. However, this means they must be trained on very large datasets. Because training models from scratch can be a very computationally intensive process requiring days or even weeks, we provide various pre-trained models, as listed below. These CNNs have been trained on the ILSVRC-2012-CLS image classification dataset.
In the table below, we list each model, the corresponding TensorFlow model file, the link to the model checkpoint, and the top 1 and top 5 accuracy (on the imagenet test set). Note that the VGG and ResNet V1 parameters have been converted from their original caffe formats (here and here), whereas the Inception and ResNet V2 parameters have been trained internally at Google. Also be aware that these accuracies were computed by evaluating using a single image crop. Some academic papers report higher accuracy by using multiple crops at multiple scales.
Model | TF-Slim File | Checkpoint | Top-1 Accuracy | Top-5 Accuracy |
69.8 | 89.6 | |||
73.9 | 91.8 | |||
78.0 | 93.9 | |||
80.2 | 95.2 | |||
80.4 | 95.3 | |||
75.2 | 92.2 | |||
76.4 | 92.9 | |||
76.8 | 93.2 | |||
75.6 | 92.8 | |||
77.0 | 93.7 | |||
77.8 | 94.1 | |||
79.9* | 95.2* | |||
71.5 | 89.8 | |||
71.1 | 89.8 | |||
70.9 | 89.9 | |||
59.1 | 81.9 | |||
41.5 | 66.3 | |||
74.9 | 92.5 | |||
71.9 | 91.0 | |||
74.0 | 91.6 | |||
82.7 | 96.2 | |||
82.9 | 96.2 | |||
74.2 | 91.9 |
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· 单线程的Redis速度为什么快?
2018-12-10 【deep learning】斯坦福CS231n—深度学习与计算机视觉(资料汇总)
2018-12-10 Chrome 不能访问tensorboard解决
2018-12-10 Hosts
2018-12-10 Jupyter notebook 文件路径
2007-12-10 喝酒喝出的计算机文化
2005-12-10 我所期待的vs2007
2005-12-10 我使用使用vs2005的理由