C#线程同步方式
一、进程内部的线程同步
1、使用lock,用法如下:
private static readonly object SeqLock = new object(); private void Print() { lock (SeqLock) { Console.WriteLine("test"); } }
特性:只能传递对象,无法设置等待超时
2、使用:InterLocked(原子操作)
其在System.Threading命名空间下,Interlocked实际是类控制计数器,从而实现进程的同步,其很容易实现生产者消费者模型
//缓冲区,只能容纳一个字符 private static char buffer; //标识量(缓冲区中已使用的空间,初始值为0) private static long numberOfUsedSpace = 0; static void Main(string[] args) { //线程:写入者 Thread Writer = new Thread(delegate () { string str = "这里面的字会一个一个读取出来,一个都不会少,,,"; for (int i = 0; i < 24; i++) { //写入数据前检查缓冲区是否已满 //如果已满,就进行等待,直到缓冲区中的数据被进程Reader读取为止 while (Interlocked.Read(ref numberOfUsedSpace) == 1) { Thread.Sleep(50); } buffer = str[i]; //向缓冲区写入数据 //写入数据后把缓冲区标记为满(由0变为1) Interlocked.Increment(ref numberOfUsedSpace); } }); //线程:读出者 Thread Reader = new Thread(delegate () { for (int i = 0; i < 24; i++) { //读取数据前检查缓冲区是否为空 //如果为空,就进行等待,直到进程Writer向缓冲区中写入数据为止 while (Interlocked.Read(ref numberOfUsedSpace) == 0) { Thread.Sleep(50); } char ch = buffer; //从缓冲区读取数据 Console.Write(ch); Interlocked.Decrement(ref numberOfUsedSpace); } }); //启动线程 Writer.Start(); Reader.Start(); Console.ReadKey();
3、使用Monitor
其中Monitor.Enter()和lock相同
Monitor.Enter(obj){ //Synchronized part }finally{ Monitor.Exit(obj); }
TryEnter则可设置等待时间等
bool lockTaken=false; Monitor.TryEnter(obj, 500, ref lockTaken); if(lockTaken){ try { //Synchronized part } finally { Monitor.Exit(obj); } }else{ //don't aquire the lock, excute other parts }
二、进程间的同步
1. WaitHandle:
封装等待对共享资源进行独占访问的操作系统特定的对象。 WaitHandle:是一个抽象类,我们一般不直接用,而是用它的派生类:
AutoResetEvent、EventWaitHandle、ManualResetEvent、Mutex、Semaphore
这个抽象类的方法如下:
WaitOne(): 等待一个信号的出现,可设置超时;
WaitAll(): 等待多个信号的出现,可设置超时;
WaitAny(): 等待任意一个信号的出现,可设置超时;
2、Mutex:
与Monitor 类似,只有一个线程能够获取锁定。利用WaitOne() 获取锁定,利用ReleaseMutex() 解除锁定。构造函数使用如下:
bool isNew = false; mutex = new Mutex(false, "Mutex1", out isNew);
参数1:锁创建后是否由主调线程拥有。 如果设为true,相当于调用了WaitOne(),需要释放,否则其他线程无法获取锁;
参数2:锁名称,可通过OpenExist()或TryOpenExist() 打开已有锁,因为操作系统识别有名称的互锁,所以可由不同的进程共享。若锁名称为空,就是未命名的互锁,不能在多个进程之间共享;
参数3: 是否为新创建的互锁;
下面的例子演示Mutex 在进程之间的使用: class Program {
private static Mutex mutex = null; static void Main(string[] args) { bool isNew = false; mutex = new Mutex(false, "Mutex1", out isNew);
Console.WriteLine("Main Start...."); mutex.WaitOne();
Console.WriteLine("Aquire Lock and Running...."); Thread.Sleep(10000); mutex.ReleaseMutex();
Console.WriteLine("Release Lock...."); Console.WriteLine("Main end...."); Console.ReadLine(); } }
连续2次运行这个控制台程序的exe,结果如下,首先运行的获取 Mutex1 互锁, 后面运行的会等待直到前面运行的释放 Mutex1 互锁。
3.Semaphore:
信号量的作用于互斥锁类似,但它可以定义一定数量的线程同时使用。下面是构造函数:
bool isNew = false; semaphore = new Semaphore(3, 3, "semaphore1", out isNew);
参数1:创建后,最初释放的锁的数量,如参数1设为2,参数2设为3,则创建后只有2个锁可用,另1个已经锁定;
参数2:定义可用锁的数量;
参数3: 信号量的名称,与Mutex类似;
参数4:是否为新创建的互锁;
以下例子创建了信号量“semaphore1”,利用Parallel.For() 同步运行Func1() ,在Func1() 中,当线程获取信号量锁,释放锁或等待超时,都会在控制台里输出,
class Program { private static Semaphore semaphore = null; static void Main(string[] args) { Console.WriteLine("Main Start...."); bool isNew = false; semaphore = new Semaphore(3, 3, "semaphore1", out isNew); Parallel.For(0, 6, Func1); Console.WriteLine("Main end...."); Console.ReadLine(); } static void Func1(int index) { Console.WriteLine("Task {0} Start....",Task.CurrentId); bool isComplete = false; while (!isComplete) { if (semaphore.WaitOne(1000)) { try { Console.WriteLine("Task {0} aquire lock....", Task.CurrentId); Thread.Sleep(5000); } finally { semaphore.Release(); Console.WriteLine("Task {0} release lock....", Task.CurrentId); isComplete = true; } } else { Console.WriteLine("Task {0} timeout....", Task.CurrentId); } } }
运行结果如下,线程1,2,3首先获取信号量锁,线程4,5,6在等待,直到1,2,3释放,
4. AutoResetEvent 类:
可以使用事件通知其他任务,构造函数为 public AutoResetEvent(bool initialState)。
当initialState=true,处于signaled 模式(终止状态),调用waitone() 也不会阻塞任务,等待信号,调用Reset()方法,可以设置为non-signaled 模式;
当initialState=fasle,处于non-signaled 模式(非终止状态),调用waitone() 会等待信号阻塞当前线程(可以在多个线程中调用,同时阻塞多个线程),直到调用set()发送信号释放线程(调用一次,只能释放一个线程),一般使用这种方式;
以下例子创建5个任务,分别调用waitone()阻塞线程,接着每隔2s 调用set(),
private static AutoResetEvent autoReset = new AutoResetEvent(false); static void Main(string[] args) { Console.WriteLine("Main Start...."); for (int i = 0; i < 5; i++) { Task.Factory.StartNew(() => { Console.WriteLine("{0} Start....", Task.CurrentId); autoReset.WaitOne(); Console.WriteLine("{0} Continue....", Task.CurrentId); }); } for (int i = 0; i < 5;i++ ) { Thread.Sleep(2000); autoReset.Set(); } Console.WriteLine("Main end...."); Console.ReadLine(); }
运行结果每次顺序略有不同,释放是随机的:
5. ManualResetEvent 类:
功能基本上和AutoSetEvent类似,但又一个不同点:
使用AutoSetEvent,每次调用set(),切换到终止模式,只能释放一个waitone(),便会自动切换到非终止模式;但ManualResetEvent,调用set(),切换到终止模式,可以释放当前所有的waitone(),需要手动调用reset()才能切换到非终止模式。
以下例子说明了这个不同的:
private static ManualResetEvent manualReset = new ManualResetEvent(false); static void Main(string[] args) { Console.WriteLine("Main Start...."); for (int i = 0; i < 5; i++) { Task.Factory.StartNew(() => { Console.WriteLine("{0} Start....", Task.CurrentId); manualReset.WaitOne(); Console.WriteLine("{0} Continue....", Task.CurrentId); }); } Thread.Sleep(2000); manualReset.Set(); manualReset.WaitOne(); Console.WriteLine("it doesn't work now, Main continue...."); manualReset.Reset(); manualReset.WaitOne(); Console.WriteLine("Main end...."); Console.ReadLine(); }
6、TaskCompletionSource
(承诺模式)
TaskCompletionSource 类允许你创建一个任务,并手动控制它的完成状态。它有以下几个主要方法:
- SetResult(T result):将任务设置为已完成状态,并提供一个结果值。
- SetException(Exception exception):将任务设置为已完成状态,并提供一个异常。
- SetCanceled():将任务设置为已取消状态。
- Task Task { get; }:获取与
TaskCompletionSource
关联的任务。
要使用 TaskCompletionSource
,可以按照以下步骤进行:
- 创建一个
TaskCompletionSource
对象。 - 在需要的时候设置任务的状态(已完成、已取消或已出错)。
- 使用
Task
属性获取与TaskCompletionSource
关联的任务。
以下是一个使用 TaskCompletionSource
的示例:
// 创建一个 TaskCompletionSource 对象 var tcs = new TaskCompletionSource<int>(); // 在某个时刻设置任务的状态 tcs.SetResult(42); // 获取与 TaskCompletionSource 关联的任务 var task = tcs.Task; // 稍后可以等待任务完成 task.Wait(); // 获取任务的结果 var result = task.Result; // 42 在你的场景中,可以使用 TaskCompletionSource 来确保在 UI 线程启动后立即执行代码: // 创建一个 TaskCompletionSource 对象 var tcs = new TaskCompletionSource<bool>(); _uiThread = new Thread(() => { application=new Application { ShutdownMode = ShutdownMode.OnExplicitShutdown }; // 设置 TaskCompletionSource 任务为已完成状态 tcs.SetResult(true); application.Run(); }); _uiThread.SetApartmentState(ApartmentState.STA); _uiThread.IsBackground = true; _uiThread.Start(); // 等待 TaskCompletionSource 任务完成 await tcs.Task.ConfigureAwait(false); await application.Dispatcher.BeginInvoke(() => { var win = new WinTest(); win.Show(); });
承诺模式是一种设计模式,它允许你将异步操作的结果与操作本身分离。这使得你可以轻松地将异步操作的结果传递给其他代码,而无需担心操作的底层实现细节。
TaskCompletionSource
类提供了以下与承诺模式相符的功能:
- **创建承诺:**你可以使用
TaskCompletionSource
的构造函数来创建承诺。 - **设置结果:**你可以使用
SetResult
方法来设置承诺的结果。 - **获取承诺:**你可以使用
Task
属性来获取与TaskCompletionSource
关联的承诺。
此外,TaskCompletionSource
类还提供了以下附加功能:
- **设置异常:**你可以使用
SetException
方法来设置承诺的异常。 - **设置取消:**你可以使用
SetCanceled
方法来设置承诺的取消。
这些附加功能使 TaskCompletionSource
类成为在 .NET 中实现承诺模式的强大工具。