sklearn
一、模块
模块preprocessing:几乎包含数据预处理的所有内容
模块Impute:填补缺失值专用
模块feature_selection:包含特征选择的各种方法的实践
模块decomposition:包含降维算法
验证算法:
sklearn.metrics print(classification_report(y_test, y_pred))
from sklearn.model_selection import cross_val_score
scores = cross_val_score(clf6, x_test, y_test, cv=5)
print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
处理标签
LabelBinarizer() # 将标签转换为二值化标签
LabelEncoder() # 将标签转换为唯一id标签
encoder = LabelEncoder() + fit_transform()
posted on 2019-12-30 14:05 nnnnnnnnnnnnnnnn 阅读(223) 评论(0) 收藏 举报