Java线程池与异步编排
Java创建线程的四种方式
1.继承Thread类实现多线程
public class MyThread extends Thread { public MyThread() { } public void run() { for(int i=0;i<10;i++) { System.out.println(Thread.currentThread()+":"+i); } } public static void main(String[] args) { MyThread mThread1=new MyThread(); MyThread mThread2=new MyThread(); MyThread myThread3=new MyThread(); mThread1.start(); mThread2.start(); myThread3.start(); } }
2.覆写Runnable()接口实现多线程,而后同样覆写run().推荐此方式
public class MyThread implements Runnable{ public static int count=20; public void run() { while(count>0) { try { Thread.sleep(200); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println(Thread.currentThread().getName()+"-当前剩余票数:"+count--); } } public static void main(String[] args) { MyThread Thread1=new MyThread(); Thread mThread1=new Thread(Thread1,"线程1"); Thread mThread2=new Thread(Thread1,"线程2"); Thread mThread3=new Thread(Thread1,"线程3"); mThread1.start(); mThread2.start(); myThread3.start(); } }
继承Thread和实现Runnable接口的区别:
a.实现Runnable接口避免多继承局限
b.实现Runnable()可以更好的体现共享的概念
3.覆写Callable接口实现多线程JDK1.5
package com.xieh; import java.util.concurrent.Callable; import java.util.concurrent.ExecutionException; import java.util.concurrent.FutureTask; /** * 实现Callable接口创建多线程Callable<V>接口的泛型是返回值类型 * * @author 谢辉 * */ public class ThreadTest implements Callable<Integer> { @Override public Integer call() throws Exception { // TODO Auto-generated method stub System.out.println("当前线程:" + Thread.currentThread().getName()); int i = 10 / 2; System.out.println("结果是:" + i); return i; } public static void main(String[] args) throws InterruptedException, ExecutionException { System.out.println("main--start"); Callable<Integer> callable = new ThreadTest(); FutureTask<Integer> futureTask = new FutureTask<Integer>(callable); Thread thread = new Thread(futureTask); thread.start(); // 等待线程执行完,获取返回结果:注意:获取返回结果是个阻塞的操作!! Integer integer = futureTask.get(); System.out.println("线程返回的结果:" + integer); System.out.println("main--end."); } }
4.通过线程池启动多线程
通过Executor 的工具类可以创建三种类型的普通线程池:
FixThreadPool(int n); 固定大小的线程池
使用于为了满足资源管理需求而需要限制当前线程数量的场合。使用于负载比较重的服务器。
package com.xieh; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.Future; public class ThreadPool { // 创建一个固定大小的线程池 public static ExecutorService ex = Executors.newFixedThreadPool(5); public static void main(String[] args) { for (int i = 0; i < 2; i++) { Future<?> submit = ex.submit(new Runnable() { @Override public void run() { for (int j = 0; j < 3; j++) { System.out.println(Thread.currentThread().getName() + "---" + j); } } }); } ex.execute(new Runnable() { @Override public void run() { // TODO Auto-generated method stub System.out.println(Thread.currentThread().getName() + "计算结果:" + 10 / 2); } }); ex.shutdown(); } }
SingleThreadPoolExecutor :单线程池
需要保证顺序执行各个任务的场景
package com.xieh; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.Future; public class ThreadPool { public static void main(String[] args) { // SingleThreadPoolExecutor :单线程池 ExecutorService ex = Executors.newSingleThreadExecutor(); for (int i = 0; i < 2; i++) { Future<?> submit = ex.submit(new Runnable() { @Override public void run() { for (int j = 0; j < 3; j++) { System.out.println(Thread.currentThread().getName() + "---" + j); } } }); } ex.shutdown(); } }
CashedThreadPool(); 缓存线程池
当提交任务速度高于线程池中任务处理速度时,缓存线程池会不断的创建线程
适用于提交短期的异步小程序,以及负载较轻的服务器
package com.xieh; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.Future; public class ThreadPool { public static void main(String[] args) { // CashedThreadPool(); 缓存线程池 ExecutorService ex = Executors.newCachedThreadPool(); for (int i = 0; i < 3; i++) { Future<?> submit = ex.submit(new Runnable() { @Override public void run() { for (int j = 0; j < 3; j++) { System.out.println(Thread.currentThread().getName() + "---" + j); } } }); } ex.shutdown(); } }
execute()和submit()方法
1、execute(),执行一个任务,没有返回值。
2、submit(),提交一个线程任务,有返回值。
submit(Callable<T> task)能获取到它的返回值,通过future.get()获取(阻塞直到任务执行完)。一般使用FutureTask+Callable配合使用(IntentService中有体现)。
submit(Runnable task, T result)能通过传入的载体result间接获得线程的返回值。
submit(Runnable task)则是没有返回值的,就算获取它的返回值也是null。
Future.get方法会使取结果的线程进入阻塞状态,知道线程执行完成之后,唤醒取结果的线程,然后返回结果。
线程池ThreadPoolExecutor详解
这个类的构造函数如下:
public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler) { if (corePoolSize < 0 || maximumPoolSize <= 0 || maximumPoolSize < corePoolSize || keepAliveTime < 0) throw new IllegalArgumentException(); if (workQueue == null || threadFactory == null || handler == null) throw new NullPointerException(); this.corePoolSize = corePoolSize; this.maximumPoolSize = maximumPoolSize; this.workQueue = workQueue; this.keepAliveTime = unit.toNanos(keepAliveTime); this.threadFactory = threadFactory; this.handler = handler; }
7大参数详解:
corePoolSize
核心线程数。在创建线程池之后,默认情况下线程池中并没有任何的线程,而是等待任务到来才创建线程去执行任务,当线程池中的线程数目达到 corePoolSize后,新来的任务将会被添加到缓存队列中,也就是那个workQueue,除非调用 ThreadPoolExecutor#prestartAllCoreThreads() 方法或者是 ThreadPoolExecutor # prestartCoreThread() 方法(从这两个方法的名字就可以看出是预创建线程的意思,即在没有任务到来之前就创建corePoolSize个线程或一个线程)。
PS:很多人不知道这个数该填多少合适,其实也不必特别纠结,根据实际情况填写就好,实在不知道,就按照阿里工程师的写法取下列值就好了:
int NUMBER_OF_CORES = Runtime.getRuntime().availableProcessors();
maximumPoolSize
线程池中的最大线程数。表示线程池中最多可以创建多少个线程,很多人以为它的作用是这样的:”当线程池中的任务数超过 corePoolSize 后,线程池会继续创建线程,直到线程池中的线程数小于maximumPoolSize“,其实这种理解是完全错误的。它真正的作用是:当线程池中的线程数等于 corePoolSize 并且 workQueue 已满,这时就要看当前线程数是否大于 maximumPoolSize,如果小于maximumPoolSize 定义的值,则会继续创建线程去执行任务, 否则将会调用去相应的任务拒绝策略来拒绝这个任务。另外超过 corePoolSize的线程被称做"Idle Thread", 这部分线程会有一个最大空闲存活时间(keepAliveTime),如果超过这个空闲存活时间还没有任务被分配,则会将这部分线程进行回收。
keepAliveTime
控制"idle Thread"的空闲存活时间。这个idle Thread就是上面提到的超过 corePoolSize 后新创建的那些线程,默认情况下,只有当线程池中的线程数大于corePoolSize,且这些"idle Thread"并没有被分配任务时,这个参数才会起作用。另外,如果调用了 ThreadPoolExecutor#allowCoreThreadTimeOut(boolean) 的方法,在线程池中的线程数不大于corePoolSize,且这些core Thread 也没有被分配任务时,keepAliveTime 参数也会起作用。
unit
参数keepAliveTime的时间单位,共7种取值,在TimeUtil中定义:
TimeUnit.DAYS; //天 TimeUnit.HOURS; //小时 TimeUnit.MINUTES; //分钟 TimeUnit.SECONDS; //秒 TimeUnit.MILLISECONDS; //毫秒 TimeUnit.MICROSECONDS; //微妙 TimeUnit.NANOSECONDS; //纳秒
workQueue
阻塞队列。如果当前线程池中的线程数目>=corePoolSize,则每来一个任务,会尝试将其添加到该队列当中,注意只要超过了 corePoolSize 就会把任务添加到该缓存队列,添加可能成功也可能不成功,如果成功的话就会等待空闲线程去执行该任务,若添加失败(一般是队列已满),就会根据当前线程池的状态决定如何处理该任务(若线程数 < maximumPoolSize 则新建线程;若线程数 >= maximumPoolSize,则会根据拒绝策略做具体处理)。
常用的阻塞队列有:
1)ArrayBlockingQueue //基于数组的先进先出队列,此队列创建时必须指定大小; 2)LinkedBlockingQueue //基于链表的先进先出队列,如果创建时没有指定此队列大小,则默认为Integer.MAX_VALUE; 3)synchronousQueue //这个队列比较特殊,它不会保存提交的任务,而是将直接新建一个线程来执行新来的任务。
threadFactory
线程工厂。用来为线程池创建线程,当我们不指定线程工厂时,线程池内部会调用Executors.defaultThreadFactory()
创建默认的线程工厂,其后续创建的线程优先级都是Thread.NORM_PRIORITY
。如果我们指定线程工厂,我们可以对产生的线程进行一定的操作。
handler
拒绝执行策略。当线程池的缓存队列已满并且线程池中的线程数目达到maximumPoolSize,如果还有任务到来就会采取任务拒绝策略,通常有以下四种策略:
ThreadPoolExecutor.AbortPolicy: // 丢弃任务并抛出RejectedExecutionException异常。 ThreadPoolExecutor.DiscardPolicy: // 也是丢弃任务,但是不抛出异常。 ThreadPoolExecutor.DiscardOldestPolicy: // 丢弃队列最前面的任务,然后重新尝试执行任务(重复此过程) ThreadPoolExecutor.CallerRunsPolicy: // 由调用线程处理该任务
CompletableFuture异步编排
1、runAsync 和 supplyAsync方法
CompletableFuture 提供了四个静态方法来创建一个异步操作:
public static CompletableFuture<Void> runAsync(Runnable runnable) public static CompletableFuture<Void> runAsync(Runnable runnable, Executor executor) public static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier) public static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier, Executor executor)
没有指定Executor的方法会使用ForkJoinPool.commonPool() 作为它的线程池执行异步代码。如果指定线程池,则使用指定的线程池运行。以下所有的方法都类同。
- runAsync方法不支持返回值。
- supplyAsync方法可以支持返回值。
package com.xieh; import java.util.concurrent.CompletableFuture; import java.util.concurrent.ExecutionException; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.LinkedBlockingDeque; import java.util.concurrent.ThreadPoolExecutor; import java.util.concurrent.TimeUnit; public class CompletableFutureTest { public static ExecutorService executorService = new ThreadPoolExecutor(5, 100, 3L, TimeUnit.SECONDS, new LinkedBlockingDeque<Runnable>(1000), Executors.defaultThreadFactory(), new ThreadPoolExecutor.AbortPolicy()); public static void main(String[] args) throws InterruptedException, ExecutionException { System.out.println("main---start"); // 没有返回值 CompletableFuture<Void> future = CompletableFuture.runAsync(() -> { System.out.println("当前线程:" + Thread.currentThread().getName()); int i = 10 / 2; System.out.println("计算结果:" + i); }, executorService); // 什么都不返回,调用get方法,就变成了阻塞操作! // future.get(); System.out.println("main---end"); executorService.shutdown(); } }
supplyAsync方法示例:
package com.xieh; import java.util.concurrent.CompletableFuture; import java.util.concurrent.ExecutionException; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.LinkedBlockingDeque; import java.util.concurrent.ThreadPoolExecutor; import java.util.concurrent.TimeUnit; public class CompletableFutureTest { public static ExecutorService executorService = new ThreadPoolExecutor(5, 100, 3L, TimeUnit.SECONDS, new LinkedBlockingDeque<Runnable>(1000), Executors.defaultThreadFactory(), new ThreadPoolExecutor.AbortPolicy()); public static void main(String[] args) throws InterruptedException, ExecutionException { System.out.println("main---start"); // 有返回值 CompletableFuture<Integer> future = CompletableFuture.supplyAsync(() -> { System.out.println("当前线程:" + Thread.currentThread().getName()); int i = 10 / 2; System.out.println("计算结果:" + i); return i; }, executorService); // 获取返回结果,调用get方法,就变成了阻塞操作! Integer integer = future.get(); System.out.println("main---end:" + integer); executorService.shutdown(); } }
2、计算结果完成时的回调方法
当CompletableFuture的计算结果完成,或者抛出异常的时候,可以执行特定的Action。主要是下面的方法:
public CompletableFuture<T> whenComplete(BiConsumer<? super T,? super Throwable> action) public CompletableFuture<T> whenCompleteAsync(BiConsumer<? super T,? super Throwable> action) public CompletableFuture<T> whenCompleteAsync(BiConsumer<? super T,? super Throwable> action, Executor executor) public CompletableFuture<T> exceptionally(Function<Throwable,? extends T> fn)
可以看到Action的类型是BiConsumer<? super T,? super Throwable>它可以处理正常的计算结果,或者异常情况。
whenComplete 和 whenCompleteAsync 的区别:
whenComplete:是执行当前任务的线程执行继续执行 whenComplete 的任务。
whenCompleteAsync:是执行把 whenCompleteAsync 这个任务继续提交给线程池来进行执行。
runAsync方法计算结果完成时的后续操作示例:
package com.xieh; import java.util.concurrent.CompletableFuture; import java.util.concurrent.ExecutionException; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.LinkedBlockingDeque; import java.util.concurrent.ThreadPoolExecutor; import java.util.concurrent.TimeUnit; import java.util.function.BiConsumer; import java.util.function.Function; public class CompletableFutureTest { public static ExecutorService executorService = new ThreadPoolExecutor(5, 100, 3L, TimeUnit.SECONDS, new LinkedBlockingDeque<Runnable>(1000), Executors.defaultThreadFactory(), new ThreadPoolExecutor.AbortPolicy()); public static void main(String[] args) throws InterruptedException, ExecutionException { System.out.println("main---start"); CompletableFuture<Void> future = CompletableFuture.runAsync(() -> { System.out.println("当前线程:" + Thread.currentThread().getName()); int i = 10 / 0; System.out.println("计算结果:" + i); }, executorService); future.whenComplete(new BiConsumer<Void, Throwable>() { @Override public void accept(Void t, Throwable action) { System.out.println("whenComplete执行完成!" + Thread.currentThread().getName()); } }); future.whenCompleteAsync(new BiConsumer<Void, Throwable>() { @Override public void accept(Void t, Throwable action) { System.out.println("whenCompleteAsync执行完成!" + Thread.currentThread().getName()); } }); future.exceptionally(new Function<Throwable, Void>() { @Override public Void apply(Throwable t) { System.out.println("执行失败!" + t.getMessage()); return null; } }); // 获取返回结果,调用get方法,就变成了阻塞操作! // future.get(); System.out.println("main---end:"); executorService.shutdown(); } }
supplyAsync方法计算结果完成时的后续操作示例:
package com.xieh; import java.util.concurrent.CompletableFuture; import java.util.concurrent.ExecutionException; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.LinkedBlockingDeque; import java.util.concurrent.ThreadPoolExecutor; import java.util.concurrent.TimeUnit; public class CompletableFutureTest { public static ExecutorService executorService = new ThreadPoolExecutor(5, 100, 3L, TimeUnit.SECONDS, new LinkedBlockingDeque<Runnable>(1000), Executors.defaultThreadFactory(), new ThreadPoolExecutor.AbortPolicy()); public static void main(String[] args) throws InterruptedException, ExecutionException { System.out.println("main---start"); CompletableFuture<Integer> future = CompletableFuture.supplyAsync(() -> { System.out.println("当前线程:" + Thread.currentThread().getName()); int i = 10 / 0; System.out.println("计算结果:" + i); return i; }, executorService).whenComplete((result, exception) -> { // 虽然能得到异常信息,但是无法修改返回数据 System.out.println("whenComplete异步任务完成了,结果是:" + result + ";异常是:" + exception); }).whenCompleteAsync((result, exception) -> { System.out.println("whenCompleteAsync异步任务完成了,结果是:" + result + ";异常是:" + exception); }).exceptionally(throwable -> { // 如果执行失败,可以设置默认返回值 return 10; }); // 获取返回结果 Integer integer = future.get(); System.out.println("main---end:" + integer); executorService.shutdown(); } }
3、 handle 方法
handle 方法和 thenApply 方法处理方式基本一样。不同的是 handle 是在任务完成后再执行,还可以处理异常的任务。thenApply 只可以执行正常的任务,任务出现异常则不执行 thenApply 方法。
package com.xieh; import java.util.concurrent.CompletableFuture; import java.util.concurrent.ExecutionException; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.LinkedBlockingDeque; import java.util.concurrent.ThreadPoolExecutor; import java.util.concurrent.TimeUnit; public class CompletableFutureTest { public static ExecutorService executorService = new ThreadPoolExecutor(5, 100, 3L, TimeUnit.SECONDS, new LinkedBlockingDeque<Runnable>(1000), Executors.defaultThreadFactory(), new ThreadPoolExecutor.AbortPolicy()); public static void main(String[] args) throws InterruptedException, ExecutionException { System.out.println("main---start"); CompletableFuture<Integer> future = CompletableFuture.supplyAsync(() -> { System.out.println("当前线程:" + Thread.currentThread().getName()); int i = 10 / 0; System.out.println("计算结果:" + i); return i; }, executorService).whenComplete((result, exception) -> { // 虽然能得到异常信息,但是无法修改返回数据 System.out.println("whenComplete异步任务完成了,结果是:" + result + ";异常是:" + exception); }).whenCompleteAsync((result, exception) -> { System.out.println("whenCompleteAsync异步任务完成了,结果是:" + result + ";异常是:" + exception); }).handle((result, throwable) -> { if (result != null) { return result * 2; } if (throwable != null) { return 1; } return 0; // 注意:handle与exceptionally都可以控制返回值,谁先被调用就以谁的为准(先被调用者的返回值为准) }).exceptionally(throwable -> { // 如果执行失败,可以设置默认返回值 return 10; }); // 获取返回结果 Integer integer = future.get(); System.out.println("main---end:" + integer); executorService.shutdown(); } }
4、线程串行化
thenApply 方法:当一个线程依赖另一个线程时,可以使用 thenApply 方法来把这两个线程串行化。
thenAccept 消费处理结果:接收任务的处理结果,并消费处理,无返回结果。
thenRun 方法:跟 thenAccept 方法不一样的是,不关心任务的处理结果。只要上面的任务执行完成,就开始执行 thenRun 。
public <U> CompletableFuture<U> thenApply(Function<? super T,? extends U> fn) public <U> CompletableFuture<U> thenApplyAsync(Function<? super T,? extends U> fn) public <U> CompletableFuture<U> thenApplyAsync(Function<? super T,? extends U> fn, Executor executor) public CompletionStage<Void> thenAccept(Consumer<? super T> action); public CompletionStage<Void> thenAcceptAsync(Consumer<? super T> action); public CompletionStage<Void> thenAcceptAsync(Consumer<? super T> action,Executor executor); public CompletionStage<Void> thenRun(Runnable action); public CompletionStage<Void> thenRunAsync(Runnable action); public CompletionStage<Void> thenRunAsync(Runnable action,Executor executor);
thenRun代码示例:
package com.xieh; import java.util.concurrent.CompletableFuture; import java.util.concurrent.ExecutionException; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.LinkedBlockingDeque; import java.util.concurrent.ThreadPoolExecutor; import java.util.concurrent.TimeUnit; public class CompletableFutureTest { public static ExecutorService executorService = new ThreadPoolExecutor(5, 100, 3L, TimeUnit.SECONDS, new LinkedBlockingDeque<Runnable>(1000), Executors.defaultThreadFactory(), new ThreadPoolExecutor.AbortPolicy()); public static void main(String[] args) throws InterruptedException, ExecutionException { System.out.println("main---start"); // thenRun不能获取上一步的执行结果 CompletableFuture<Void> future = CompletableFuture.supplyAsync(() -> { System.out.println("当前线程:" + Thread.currentThread().getName()); int i = 10 / 2; System.out.println("计算结果:" + i); return i; }, executorService).thenRunAsync(() -> { System.out.println("任务2启动了..."); }, executorService); System.out.println("main---end:"); executorService.shutdown(); } }
thenAccept代码示例:
package com.xieh; import java.util.concurrent.CompletableFuture; import java.util.concurrent.ExecutionException; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.LinkedBlockingDeque; import java.util.concurrent.ThreadPoolExecutor; import java.util.concurrent.TimeUnit; public class CompletableFutureTest { public static ExecutorService executorService = new ThreadPoolExecutor(5, 100, 3L, TimeUnit.SECONDS, new LinkedBlockingDeque<Runnable>(1000), Executors.defaultThreadFactory(), new ThreadPoolExecutor.AbortPolicy()); public static void main(String[] args) throws InterruptedException, ExecutionException { System.out.println("main---start"); // thenAccept能获取到上一步的结果,但是无返回值 CompletableFuture<Void> future = CompletableFuture.supplyAsync(() -> { System.out.println("当前线程:" + Thread.currentThread().getName()); int i = 10 / 2; System.out.println("计算结果:" + i); return i; }, executorService).thenAcceptAsync((result) -> { System.out.println("任务2启动了,上一步的结果是:" + result); }, executorService); System.out.println("main---end:"); executorService.shutdown(); } }
thenApply代码示例:
package com.xieh; import java.util.concurrent.CompletableFuture; import java.util.concurrent.ExecutionException; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.LinkedBlockingDeque; import java.util.concurrent.ThreadPoolExecutor; import java.util.concurrent.TimeUnit; public class CompletableFutureTest { public static ExecutorService executorService = new ThreadPoolExecutor(5, 100, 3L, TimeUnit.SECONDS, new LinkedBlockingDeque<Runnable>(1000), Executors.defaultThreadFactory(), new ThreadPoolExecutor.AbortPolicy()); public static void main(String[] args) throws InterruptedException, ExecutionException { System.out.println("main---start"); // thenApply能获取到上一步的结果,可以有返回值 CompletableFuture<String> future = CompletableFuture.supplyAsync(() -> { System.out.println("当前线程:" + Thread.currentThread().getName()); int i = 10 / 2; System.out.println("计算结果:" + i); return i; }, executorService).thenApplyAsync(result -> { System.out.println("任务2开启了,上一步的结果是:" + result); return "thenApplyAsync的新结果"; }, executorService); String string = future.get(); System.out.println("main---end:" + string); executorService.shutdown(); } }
5、任务合并
thenCombine:thenCombine 会把 两个 CompletionStage 的任务都执行完成后,把两个任务的结果一块交给 thenCombine 来处理。
thenAcceptBoth:当两个CompletionStage都执行完成后,把结果一块交给thenAcceptBoth来进行消耗。
thenCompose:thenCompose 方法允许你对两个 CompletionStage 进行流水线操作,第一个操作完成时,将其结果作为参数传递给第二个操作。
applyToEither:两个CompletionStage,谁执行返回的结果快,我就用那个CompletionStage的结果进行下一步的转化操作。
acceptEither:两个CompletionStage,谁执行返回的结果快,我就用那个CompletionStage的结果进行下一步的消耗操作。
runAfterEither:两个CompletionStage,任何一个完成了都会执行下一步的操作(Runnable)。
runAfterBoth:两个CompletionStage,都完成了计算才会执行下一步的操作(Runnable)。
public <U,V> CompletionStage<V> thenCombine(CompletionStage<? extends U> other,BiFunction<? super T,? super U,? extends V> fn); public <U,V> CompletionStage<V> thenCombineAsync(CompletionStage<? extends U> other,BiFunction<? super T,? super U,? extends V> fn); public <U,V> CompletionStage<V> thenCombineAsync(CompletionStage<? extends U> other,BiFunction<? super T,? super U,? extends V> fn,Executor executor); public <U> CompletionStage<Void> thenAcceptBoth(CompletionStage<? extends U> other,BiConsumer<? super T, ? super U> action); public <U> CompletionStage<Void> thenAcceptBothAsync(CompletionStage<? extends U> other,BiConsumer<? super T, ? super U> action); public <U> CompletionStage<Void> thenAcceptBothAsync(CompletionStage<? extends U> other,BiConsumer<? super T, ? super U> action, Executor executor); public <U> CompletableFuture<U> thenCompose(Function<? super T, ? extends CompletionStage<U>> fn); public <U> CompletableFuture<U> thenComposeAsync(Function<? super T, ? extends CompletionStage<U>> fn) ; public <U> CompletableFuture<U> thenComposeAsync(Function<? super T, ? extends CompletionStage<U>> fn, Executor executor) ; public <U> CompletionStage<U> applyToEither(CompletionStage<? extends T> other,Function<? super T, U> fn); public <U> CompletionStage<U> applyToEitherAsync(CompletionStage<? extends T> other,Function<? super T, U> fn); public <U> CompletionStage<U> applyToEitherAsync(CompletionStage<? extends T> other,Function<? super T, U> fn,Executor executor); public CompletionStage<Void> acceptEither(CompletionStage<? extends T> other,Consumer<? super T> action); public CompletionStage<Void> acceptEitherAsync(CompletionStage<? extends T> other,Consumer<? super T> action); public CompletionStage<Void> acceptEitherAsync(CompletionStage<? extends T> other,Consumer<? super T> action,Executor executor); public CompletionStage<Void> runAfterEither(CompletionStage<?> other,Runnable action); public CompletionStage<Void> runAfterEitherAsync(CompletionStage<?> other,Runnable action); public CompletionStage<Void> runAfterEitherAsync(CompletionStage<?> other,Runnable action,Executor executor); public CompletionStage<Void> runAfterBoth(CompletionStage<?> other,Runnable action); public CompletionStage<Void> runAfterBothAsync(CompletionStage<?> other,Runnable action); public CompletionStage<Void> runAfterBothAsync(CompletionStage<?> other,Runnable action,Executor executor);
thenCombine代码示例:
private static void thenCombine() throws Exception { CompletableFuture<String> future1 = CompletableFuture.supplyAsync(new Supplier<String>() { @Override public String get() { return "hello"; } }); CompletableFuture<String> future2 = CompletableFuture.supplyAsync(new Supplier<String>() { @Override public String get() { return "hello"; } }); CompletableFuture<String> result = future1.thenCombine(future2, new BiFunction<String, String, String>() { @Override public String apply(String t, String u) { return t+" "+u; } }); System.out.println(result.get()); }
thenAcceptBoth代码示例:
private static void thenAcceptBoth() throws Exception { CompletableFuture<Integer> f1 = CompletableFuture.supplyAsync(new Supplier<Integer>() { @Override public Integer get() { int t = new Random().nextInt(3); try { TimeUnit.SECONDS.sleep(t); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("f1="+t); return t; } }); CompletableFuture<Integer> f2 = CompletableFuture.supplyAsync(new Supplier<Integer>() { @Override public Integer get() { int t = new Random().nextInt(3); try { TimeUnit.SECONDS.sleep(t); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("f2="+t); return t; } }); f1.thenAcceptBoth(f2, new BiConsumer<Integer, Integer>() { @Override public void accept(Integer t, Integer u) { System.out.println("f1="+t+";f2="+u+";"); } }); }
thenCompose代码示例:
private static void thenCompose() throws Exception { CompletableFuture<Integer> f = CompletableFuture.supplyAsync(new Supplier<Integer>() { @Override public Integer get() { int t = new Random().nextInt(3); System.out.println("t1="+t); return t; } }).thenCompose(new Function<Integer, CompletionStage<Integer>>() { @Override public CompletionStage<Integer> apply(Integer param) { return CompletableFuture.supplyAsync(new Supplier<Integer>() { @Override public Integer get() { int t = param *2; System.out.println("t2="+t); return t; } }); } }); System.out.println("thenCompose result : "+f.get()); }
applyToEither 代码示例:
private static void applyToEither() throws Exception { CompletableFuture<Integer> f1 = CompletableFuture.supplyAsync(new Supplier<Integer>() { @Override public Integer get() { int t = new Random().nextInt(3); try { TimeUnit.SECONDS.sleep(t); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("f1="+t); return t; } }); CompletableFuture<Integer> f2 = CompletableFuture.supplyAsync(new Supplier<Integer>() { @Override public Integer get() { int t = new Random().nextInt(3); try { TimeUnit.SECONDS.sleep(t); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("f2="+t); return t; } }); CompletableFuture<Integer> result = f1.applyToEither(f2, new Function<Integer, Integer>() { @Override public Integer apply(Integer t) { System.out.println(t); return t * 2; } }); System.out.println(result.get()); }
acceptEither代码示例:
private static void acceptEither() throws Exception { CompletableFuture<Integer> f1 = CompletableFuture.supplyAsync(new Supplier<Integer>() { @Override public Integer get() { int t = new Random().nextInt(3); try { TimeUnit.SECONDS.sleep(t); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("f1="+t); return t; } }); CompletableFuture<Integer> f2 = CompletableFuture.supplyAsync(new Supplier<Integer>() { @Override public Integer get() { int t = new Random().nextInt(3); try { TimeUnit.SECONDS.sleep(t); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("f2="+t); return t; } }); f1.acceptEither(f2, new Consumer<Integer>() { @Override public void accept(Integer t) { System.out.println(t); } }); }
runAfterEither代码示例:
private static void runAfterEither() throws Exception { CompletableFuture<Integer> f1 = CompletableFuture.supplyAsync(new Supplier<Integer>() { @Override public Integer get() { int t = new Random().nextInt(3); try { TimeUnit.SECONDS.sleep(t); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("f1="+t); return t; } }); CompletableFuture<Integer> f2 = CompletableFuture.supplyAsync(new Supplier<Integer>() { @Override public Integer get() { int t = new Random().nextInt(3); try { TimeUnit.SECONDS.sleep(t); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("f2="+t); return t; } }); f1.runAfterEither(f2, new Runnable() { @Override public void run() { System.out.println("上面有一个已经完成了。"); } }); }
runAfterBoth代码示例:
private static void runAfterBoth() throws Exception { CompletableFuture<Integer> f1 = CompletableFuture.supplyAsync(new Supplier<Integer>() { @Override public Integer get() { int t = new Random().nextInt(3); try { TimeUnit.SECONDS.sleep(t); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("f1="+t); return t; } }); CompletableFuture<Integer> f2 = CompletableFuture.supplyAsync(new Supplier<Integer>() { @Override public Integer get() { int t = new Random().nextInt(3); try { TimeUnit.SECONDS.sleep(t); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("f2="+t); return t; } }); f1.runAfterBoth(f2, new Runnable() { @Override public void run() { System.out.println("上面两个任务都执行完成了。"); } }); }
参考文章:
https://www.jianshu.com/p/6bac52527ca4
https://www.liaoxuefeng.com/wiki/1252599548343744/1306581182447650