复杂度分析(下):最好、最坏、平均、均摊时间复杂度
先看一段代码:
// n表示数组array的长度
int find(int[] array, int n, int x) {
int i = 0;
int pos = -1;
for (; i < n; ++i) {
if (array[i] == x) {
pos = i;
break;
}
}
return pos;
}
提问:这段代码的时间复杂度还是 O(n) 吗?
不一定
因为,要查找的变量 x 可能出现在数组的任意位置。如果数组中第一个元素正好是要查找的变量 x,那就不需要继续遍历剩下的 n-1 个数据了,那时间复杂度就是 O(1)。但如果数组中不存在变量 x,那我们就需要把整个数组都遍历一遍,时间复杂度就成了 O(n)。所以,不同的情况下,这段代码的时间复杂度是不一样的。
所以为了表示代码在不同情况下的不同时间复杂度,我们需要引入三个概念:最好情况时间复杂度
、最坏情况时间复杂度
、平均情况时间复杂度
。
最好情况时间复杂度(best case time complexity)
最好情况时间复杂度就是在最理想的情况下,执行这段代码的时间复杂度,
就像我们刚刚讲到的,在最理想的情况下,要查找的变量 x 正好是数组的第一个元素,这个时候对应的时间复杂度就是最好情况时间复杂度。
最坏情况时间复杂度(worst case time complexity)
最坏情况时间复杂度就是在最糟糕的情况下,执行这段代码的时间复杂度
就像刚举的那个例子,如果数组中没有要查找的变量 x,我们需要把整个数组都遍历一遍才行,所以这种最糟糕情况下对应的时间复杂度就是最坏情况时间复杂度。
平均情况时间复杂度(average case time complexity)
最好情况时间复杂度和最坏情况时间复杂度对应的都是极端情况下的代码复杂度,发生的概率其实并不大。为了更好地表示平均情况下的复杂度,我们需要引入另一个概念:平均情况时间复杂度,后面我简称为平均时间复杂度。
要查找的变量 x 在数组中的位置,有 n+1 种情况:在数组的 0~n-1 位置中和不在数组中。我们把每种情况下,查找需要遍历的元素个数累加起来,然后再除以 n+1,就可以得到需要遍历的元素个数的平均值,即:
等差数列求和:项数(首项+尾项)/2
如果x再第一个位置,那需要1次比对,如果再第二个位置,就需要比对2次,一次类推,如果在第n个位置,就需要比对n次。如果不在数组中,也需要比对n次。所有的次数之和除以n+1中情况,就是平均比对元素个数。
咱们把刚刚这个公式简化之后,得到的平均时间复杂度就是 O(n)。
我们知道,要查找的变量 x,要么在数组里,要么就不在数组里。为了方便你理解,我们假设在数组中与不在数组中的概率都为 1/2。另外,要查找的数据出现在 0~n-1 这 n 个位置的概率也是一样的,为 1/n。所以,根据概率乘法法则,要查找的数据出现在 0~n-1 中任意位置的概率就是 1/(2n)。
那平均时间复杂度的计算过程就变成了这样:
这个值就是概率论中的加权平均值,也叫作期望值,所以平均时间复杂度的全称应该叫加权平均时间复杂度或者期望时间复杂度。
引入概率之后,前面那段代码的加权平均值为 (3n+1)/4。用大 O 表示法来表示,去掉系数和常量,这段代码的加权平均时间复杂度仍然是 O(n)。
均摊时间复杂度(amortized time complexity)
还是先看例子来帮助你理解(这个例子只为方便讲解,不推荐写。)
// array表示一个长度为n的数组
// 代码中的array.length就等于n
int[] array = new int[n];
int count = 0;
void insert(int val) {
if (count == array.length) {
int sum = 0;
for (int i = 0; i < array.length; ++i) {
sum = sum + array[i];
}
array[0] = sum;
count = 1;
}
array[count] = val;
++count;
}
最理想的情况下,数组中有空闲空间,我们只需要将数据插入到数组下标为 count 的位置就可以了,所以最好情况时间复杂度为 O(1)。最坏的情况下,数组中没有空闲空间了,我们需要先做一次数组的遍历求和,然后再将数据插入,所以最坏情况时间复杂度为 O(n)。
假设数组的长度是 n,根据数据插入的位置的不同,我们可以分为 n 种情况,每种情况的时间复杂度是 O(1)。除此之外,还有一种“额外”的情况,就是在数组没有空闲空间时插入一个数据,这个时候的时间复杂度是 O(n)。而且,这 n+1 种情况发生的概率一样,都是 1/(n+1)。所以,根据加权平均的计算方法,我们求得的平均时间复杂度就是:
我们先来对比一下这个 insert() 的例子和前面那个 find() 的例子,你就会发现这两者有很大差别。
首先,find() 函数在极端情况下,复杂度才为 O(1)。但 insert() 在大部分情况下,时间复杂度都为 O(1)。只有个别情况下,复杂度才比较高,为 O(n)。这是 insert()第一个区别于 find() 的地方。
我们再来看第二个不同的地方。对于 insert() 函数来说,O(1) 时间复杂度的插入和 O(n) 时间复杂度的插入,出现的频率是非常有规律的,而且有一定的前后时序关系,一般都是一个 O(n) 插入之后,紧跟着 n-1 个 O(1) 的插入操作,循环往复。
每一次 O(n) 的插入操作,都会跟着 n-1 次 O(1) 的插入操作,所以把耗时多的那次操作均摊到接下来的 n-1 次耗时少的操作上,均摊下来,这一组连续的操作的均摊时间复杂度就是 O(1)。这就是均摊分析的大致思路。你都理解了吗?
思考
// 全局变量,大小为10的数组array,长度len,下标i。
int array[] = new int[10];
int len = 10;
int i = 0;
// 往数组中添加一个元素
void add(int element) {
if (i >= len) { // 数组空间不够了
// 重新申请一个2倍大小的数组空间
int new_array[] = new int[len*2];
// 把原来array数组中的数据依次copy到new_array
for (int j = 0; j < len; ++j) {
new_array[j] = array[j];
}
// new_array复制给array,array现在大小就是2倍len了
array = new_array;
len = 2 * len;
}
// 将element放到下标为i的位置,下标i加一
array[i] = element;
++i;
}
该算法的最好情况时间复杂度(best case time complexity)为O(1);
最坏情况时间复杂度(worst case time complexity)为O(n);
平均情况时间复杂度(average case time complexity),
第一种计算方式: (1+1+...+1+n)/(n+1) = 2n/(n+1) 【注: 式子中1+1+...+1中有n个1】,所以平均复杂度为O(1);
第二种计算方式(加权平均法,又称期望): 1(1/n+1)+1(1/n+1)+...+1(1/n+1)+n(1/(n+1))=1,所以加权平均时间复杂度为O(1);
第三种计算方式(均摊时间复杂度): 前n个操作复杂度都是O(1),第n+1次操作的复杂度是O(n),所以把最后一次的复杂度分摊到前n次上,那么均摊下来每次操作的复杂度为O(1)。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 无需6万激活码!GitHub神秘组织3小时极速复刻Manus,手把手教你使用OpenManus搭建本