复杂度分析(上):分析、统计算法的执行效率和资源消耗?


想要学习数据结构与算法,首先要掌握一个数据结构与算法中最重要的概念——复杂度分析

数据结构和算法解决的是如何更省、更快地存储和处理数据的问题,因此,我们就需要一个考量效率和资源消耗的方法,这就是复杂度分析方法。

其实,只要讲到数据结构与算法,就一定离不开时间、空间复杂度分析,复杂度分析是整个算法学习的精髓,只要掌握了它,数据结构和算法的内容基本上就掌握了一半

大 O 复杂度表示法

 int cal(int n) {
   int sum = 0;
   int i = 1;
   for (; i <= n; ++i) {
     sum = sum + i;
   }
   return sum;
 }

从 CPU 的角度来看,这段代码的每一行都执行着类似的操作:读数据-运算-写数据。我们只是粗略估计,所以假设每行代码执行的时间都为 unit_time。在这个假设的基础之上,第 2、3 行代码分别需要 1 个 unit_time 的执行时间,第 4、5 行都运行了 n 遍,所以需要 2n * unit_time 的执行时间,所以这段代码总的执行时间就是 (2n+2) * unit_time。
所有代码的执行时间 T(n) 与每行代码的执行次数成正比。

按照这个分析思路,我们再来看这段代码。

 int cal(int n) {
   int sum = 0;
   int i = 1;
   int j = 1;
   for (; i <= n; ++i) {
     j = 1;
     for (; j <= n; ++j) {
       sum = sum +  i * j;
     }
   }
 }

假设每个语句的执行时间是 unit_time,
第 2、3、4 行代码,每行都需要 1 个 unit_time 的执行时间,第 5、6 行代码循环执行了 n 遍,需要 2n * unit_time 的执行时间,第 7、8 行代码循环执行了 n2遍,所以需要 2n2 * unit_time 的执行时间。所以,整段代码总的执行时间 T(n) = (2n2+2n+3)*unit_time。

通过这两段代码执行时间的推导过程,我们可以得到一个非常重要的规律,那就是,所有代码的执行时间 T(n) 与每行代码的执行次数 f(n) 成正比。

我们可以把这个规律总结成一个公式:
image

其中,T(n) 表示代码执行的时间;n 表示数据规模的大小;f(n) 表示每行代码执行的次数总和。因为这是一个公式,所以用 f(n) 来表示。公式中的 O,表示代码的执行时间 T(n) 与 f(n) 表达式成正比。

所以,第一个例子中的 T(n) = O(2n+2),第二个例子中的 T(n) = O(2n2+2n+3)。这就是大 O 时间复杂度表示法。大 O 时间复杂度实际上并不具体表示代码真正的执行时间,而是表示代码执行时间随数据规模增长的变化趋势,所以,也叫作渐进时间复杂度(asymptotic time complexity),简称时间复杂度

当 n 很大时,你可以把它想象成 10000、100000。而公式中的低阶、常量、系数三部分并不左右增长趋势,所以都可以忽略。我们只需要记录一个最大量级就可以了,如果用大 O 表示法表示刚讲的那两段代码的时间复杂度,就可以记为:T(n) = O(n); T(n) = O(n2)。

时间复杂度分析

  1. 只关注循环执行次数最多的一段代码

我们在分析一个算法、一段代码的时间复杂度的时候,也只关注循环执行次数最多的那一段代码就可以了
为了便于你理解,我还是拿前面的例子来说明。


 int cal(int n) {
   int sum = 0;
   int i = 1;
   for (; i <= n; ++i) {
     sum = sum + i;
   }
   return sum;
 }

其中第 2、3 行代码都是常量级的执行时间,与 n 的大小无关,所以对于复杂度并没有影响。循环执行次数最多的是第 4、5 行代码,所以这块代码要重点分析。前面我们也讲过,这两行代码被执行了 n 次,所以总的时间复杂度就是 O(n)。

  1. 加法法则:总复杂度等于量级最大的那段代码的复杂度

int cal(int n) {
   int sum_1 = 0;
   int p = 1;
   for (; p < 100; ++p) {
     sum_1 = sum_1 + p;
   }

   int sum_2 = 0;
   int q = 1;
   for (; q < n; ++q) {
     sum_2 = sum_2 + q;
   }

   int sum_3 = 0;
   int i = 1;
   int j = 1;
   for (; i <= n; ++i) {
     j = 1;
     for (; j <= n; ++j) {
       sum_3 = sum_3 +  i * j;
     }
   }

   return sum_1 + sum_2 + sum_3;
 }

当 n 无限大的时候,量级的执行时间就可以忽略,所以第二段代码和第三段代码的时间复杂度是 O(n) 和 O(n2),整段代码的时间复杂度就为 O(n2)。也就是说:总的时间复杂度就等于量级最大的那段代码的时间复杂度

如果 T1(n)=O(f(n)),T2(n)=O(g(n));那么 T(n)=T1(n)+T2(n)=max(O(f(n)), O(g(n))) =O(max(f(n), g(n))).

  1. 乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积
    如果 T1(n)=O(f(n)),T2(n)=O(g(n));那么T(n)=T1(n)T2(n)=O(f(n))O(g(n))=O(f(n)*g(n)).

也就是说,假设 T1(n) = O(n),T2(n) = O(n2),则 T1(n) * T2(n) = O(n3)。落实到具体的代码上,我们可以把乘法法则看成是嵌套循环,我举个例子给你解释一下。


int cal(int n) {
   int ret = 0; 
   int i = 1;
   for (; i < n; ++i) {
     ret = ret + f(i);
   }
 }

 int f(int n) {
  int sum = 0;
  int i = 1;
  for (; i < n; ++i) {
    sum = sum + i;
  }
  return sum;
 }

我们单独看 cal() 函数。假设 f() 只是一个普通的操作,那第 4~6 行的时间复杂度就是,T1(n) = O(n)。但 f() 函数本身不是一个简单的操作,它的时间复杂度是 T2(n) = O(n),所以,整个 cal() 函数的时间复杂度就是,T(n) = T1(n) * T2(n) = O(n*n) = O(n2)。

  1. 复杂度量级分类

对于刚罗列的复杂度量级,我们可以粗略地分为两类,多项式量级非多项式量级。其中,非多项式量级只有两个:O(2n) 和 O(n!)。

我们主要来看几种常见的多项式时间复杂度

  • O(1)

首先你必须明确一个概念,O(1) 只是常量级时间复杂度的一种表示方法,并不是指只执行了一行代码。比如这段代码,即便有 3 行,它的时间复杂度也是 O(1),而不是 O(3)。

int i = 8;
int j = 6;
int sum = i + j;

一般情况下,只要算法中不存在循环语句、递归语句,即使有成千上万行的代码,其时间复杂度也是Ο(1)。

  • O(logn)、O(nlogn)

 i=1;
 while (i <= n)  {
   i = i * 2;
 }

从代码中可以看出,变量 i 的值从 1 开始取,每循环一次就乘以 2。当大于 n 时,循环结束。还记得我们高中学过的等比数列吗?实际上,变量 i 的取值就是一个等比数列:

20 21 22 23 ... 2k ... 2x =n

所以,我们只要知道 x 值是多少,就知道这行代码执行的次数了。通过 2x=n 求解 x ,x=log2n,所以这段代码的时间复杂度就是 O(log2n)。


 i=1;
 while (i <= n)  {
   i = i * 3;
 }

同理,这段代码的时间复杂度为 O(log3n)。
又因为对数之间是可以互相转换的,log3n 就等于 log32 * log2n,所以 O(log3n) = O(C * log2n),其中 C=log32 是一个常量省略。所以,O(log2n) 就等于 O(log3n)。因此,在对数阶时间复杂度的表示方法里,我们忽略对数的“底”,统一表示为 O(logn)。

  • O(m+n)、O(m*n)

int cal(int m, int n) {
  int sum_1 = 0;
  int i = 1;
  for (; i < m; ++i) {
    sum_1 = sum_1 + i;
  }

  int sum_2 = 0;
  int j = 1;
  for (; j < n; ++j) {
    sum_2 = sum_2 + j;
  }

  return sum_1 + sum_2;
}

从代码中可以看出,m 和 n 是表示两个数据规模。我们无法事先评估 m 和 n 谁的量级大,所以我们在表示复杂度的时候,就不能简单地利用加法法则,省略掉其中一个。所以,上面代码的时间复杂度就是 O(m+n)。

针对这种情况,原来的加法法则就不正确了,我们需要将加法规则改为:T1(m) + T2(n) = O(f(m) + g(n))。但是乘法法则继续有效:T1(m)*T2(n) = O(f(m) * f(n))。

空间复杂度分析

  1. 概念:空间复杂度全称就是渐进空间复杂度(asymptotic space complexity),表示算法的存储空间与数据规模之间的增长关系。

void print(int n) {
  int i = 0;
  int[] a = new int[n];
  for (i; i <n; ++i) {
    a[i] = i * i;
  }

  for (i = n-1; i >= 0; --i) {
    print out a[i]
  }
}

跟时间复杂度分析一样,我们可以看到,第 2 行代码中,我们申请了一个空间存储变量 i,但是它是常量阶的,跟数据规模 n 没有关系,所以我们可以忽略。第 3 行申请了一个大小为 n 的 int 类型数组,除此之外,剩下的代码都没有占用更多的空间,所以整段代码的空间复杂度就是 O(n)。

我们常见的空间复杂度就是 O(1)、O(n)、O(n2 ),像 O(logn)、O(nlogn) 这样的对数阶复杂度平时都用不到。而且,空间复杂度分析比时间复杂度分析要简单很多。所以,对于空间复杂度,掌握刚我说的这些内容已经足够了。

posted @ 2022-07-21 23:29  fionna  阅读(56)  评论(0编辑  收藏  举报