pandas练习(三)------ 数据分组

探索酒类消费数据

相关数据见(github

步骤1 - 导入pandas库

import pandas as pd

步骤2 - 数据集

path3 = "./data/drinks.csv"      # drinks.csv

步骤3 将数据框命名为drinks

drinks = pd.read_csv(path3)
drinks.head()

输出:

步骤4 哪个大陆(continent)平均消耗的啤酒(beer)更多?

beeravg = drinks.groupby('continent').beer_servings.mean()
beeravg.sort_values(ascending=False)

输出:

 

步骤5 打印出每个大陆(continent)的红酒消耗(wine_servings)的描述性统计值

drinks.groupby('continent').wine_servings.describe()

输出:

 

步骤6 打印出每个大陆每种酒类别的消耗平均值

drinks.groupby('continent').mean()

输出:

步骤7 打印出每个大陆每种酒类别的消耗中位数

drinks.groupby('continent').median()

输出:

步骤8 打印出每个大陆对spirit饮品消耗的平均值,最大值和最小值

drinks.groupby('continent').spirit_servings.agg(['mean', 'min', 'max'])

输出:

 

参考链接:

1、http://pandas.pydata.org/pandas-docs/stable/cookbook.html#cookbook

2、https://www.analyticsvidhya.com/blog/2016/01/12-pandas-techniques-python-data-manipulation/

3、https://github.com/guipsamora/pandas_exercises

posted @   半夜打老虎  阅读(2447)  评论(0编辑  收藏  举报
编辑推荐:
· AI与.NET技术实操系列:基于图像分类模型对图像进行分类
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
阅读排行:
· 25岁的心里话
· 闲置电脑爆改个人服务器(超详细) #公网映射 #Vmware虚拟网络编辑器
· 零经验选手,Compose 一天开发一款小游戏!
· 因为Apifox不支持离线,我果断选择了Apipost!
· 通过 API 将Deepseek响应流式内容输出到前端
点击右上角即可分享
微信分享提示