线段相交

记两线段为\(AB\)\(CD\)

一、方法一

1. 先判断线段是否共线

依据共线向量叉乘为零来判断
\(\vec{AB}\)\(\vec{CD}\)叉乘是否为0,如果为0则共线

2. 在不共线情况下判断是否相交

依据\(0 \leq t \leq 1\)\(0 \leq u \leq 1\)来判断,其中\(t\)\(u\)的推导过程如下:

假设交点为\(P\),则有\(P = A + \vec{AB} * t, \quad t \in [0, 1]\)\(P = C + \vec{CD} * u, \quad u \in [0, 1]\)

\(A + \vec{AB} * t = C + \vec{CD} * u \quad ==> \quad \vec{AB} * t = \vec{AC} + \vec{CD}*u\)

由于向量自身的叉乘为0,所以上式两边同时叉乘\(\vec{CD}\)可得:

\(\vec{CD} \times \vec{AB} * t = \vec{CD} \times \vec{AC}\)

变形可得:

\(t = \frac{\vec{CD} \times \vec{AC}}{\vec{CD} \times \vec{AB}}, t \in [0, 1]\)

同理,两边同时叉乘\(\vec{AB}\)可得:\(-\vec{AB} \times \vec{CD} * u = \vec{AB} \times \vec{AC}\),所以:

\(u = \frac{\vec{AB} \times \vec{AC}}{\vec{CD} \times \vec{AB}}, u \in [0, 1]\)

3. 在相交的情况下计算交点

依据第2步计算的\(t\)\(u\),代入:\(P = A + \vec{AB} * t, \quad t \in [0, 1]\)\(P = C + \vec{CD} * u, \quad u \in [0, 1]\)即可求出交点\(P\)的坐标

代码实现

struct Point {
  float x, y;
  Point(const float& px = 0, const float& py = 0) : x(px), y(py) {}
  Point operator+(const Point& p) const {
    return Point(x + p.x, y + p.y);
  }
  Point& operator+=(const Point& p) {
    x += p.x;
    y += p.y;
    return *this;
  }
  Point operator-(const Point& p) const {
    return Point(x - p.x, y - p.y);
  }
  Point operator*(const float coeff) const {
    return Point(x * coeff, y * coeff);
  }
};

float Dot2d(const Point & A, const Point & B) {
  return A.x * B.x + A.y * B.y;
}
 
float Cross2d(const Point & A, const Point & B) {
  return A.x * B.y - B.x * A.y;
}

bool IsInsert(const Point& A, const Point& B, const Point& C, const Point&D)
{
     Point AB = B - A;
     Point CD = D - C;
     float det = Cross2d(CD , AB);

      // This takes care of parallel lines
      if (std::fabs(det) <= 1e-14) {
        return false;
      }

      Point AC= C - A;

      double t = Cross2d(CD, AC) / det;
      double u = Cross2d(AB, AC) / det;

      if (t > -EPS && t < 1.0f + EPS && u > -EPS && u < 1.0f + EPS) {
         return true;
         // intersections P = A + AB * t;
      }
}

二、方法二

1. 先判断线段是否共线

同方法一

2. 在不共线情况下判断是否相交

依据线段相交则一条线段两端点位于另一线段两侧来判断
相交情况下有如下两种情形:

判断是否在两侧可以依据两个向量的叉乘(右手法则),如下:

\(\vec{OA} \times \vec{OB} > 0\),则\(\vec{OB}\)\(\vec{OA}\)的逆时针方向
\(\vec{OB} \times \vec{OA} < 0\),则\(\vec{OA}\)\(\vec{OB}\)的顺时针方向

所以在相交的两种情况下有:

  • 情况1
    \(C\)\(D\)\(AB\)两侧,则有:

\((\vec{AC} \times \vec{AB}) \cdot (\vec{AD} \times \vec{AB}) < 0\)

\(A\)\(B\)\(CD\)两侧,则有:

\((\vec{CA} \times \vec{CD}) \cdot (\vec{CB} \times \vec{CD}) < 0\)

  • 情况2
    由于端点在线段上,所以有一个叉乘为0,因此:

\((\vec{AC} \times \vec{AB}) \cdot (\vec{AD} \times \vec{AB}) = 0\)\((\vec{CA} \times \vec{CD}) \cdot (\vec{CB} \times \vec{CD}) = 0\)

代码实现

bool IsInsert(const Point& A, const Point& B, const Point& C, const Point&D)
{
     Point AB = B - A;
     Point CD = D - C;
     Point AC = C - A; 
     Point AD = D - A;
     Point CB = B - C;
     Point CA = -AC;  
     float det = Cross2d(CD , AB);

     // This takes care of parallel lines
     if (std::fabs(det) <= 1e-14) {
        return false;
     }

     if (Cross2D(AC, AB) * Cross2D(AD, AB) <= EPS  &&  Cross2D(CA, CD) * Cross2D(CB, CD)< EPS) {
         return true; 
     }
}

参考链接

line_intersection
Two_line_segments

posted @ 2023-01-10 22:39  半夜打老虎  阅读(377)  评论(0编辑  收藏  举报