线性模型的fit,predict
线性模型的fit其实一个进行学习的过程,根据数据和标签进行学习;predict则是基于fit之后形成的模型,来决定指定的数据对应于标签(y_train_5)的值。
下面的是手写字母判断是否为“5”
sgd_clf = SGDClassifier(random_state=42)
sgd_clf.fit(X_train, y_train_5)
sgd_clf.predict([some_digit])
>>> array([ True])
X_train就是数据,y_train_5就是标签,后者是标注指定的数据是否是数据“5”
下面是判断房屋中值:
lin_reg = LinearRegression()
lin_reg.fit(housing_prepared, housing_labels)
some_data = housing.iloc[:5]
some_labels = housing_labels.iloc[:5]
some_data_prepared = full_pipeline.transform(some_data)
>>> print("Predictions:\t", lin_reg.predict(some_data_prepared))
Predictions: [ 303104. 44800. 308928. 294208. 368704.]
>>> print("Labels:\t\t", list(some_labels))
Labels: [359400.0, 69700.0, 302100.0, 301300.0, 351900.0]
回归的本质就是根据真实数据倒推公式中各个系数值;
第一个例子中,是分类的学习,所以学习的结果只能是限定的分类中;第二个例子是回归学习,回归学习就是形成一个线性公式,所以predict返回值其实是公式返回来的值。fit就是开始学习(此时通过notebook可以发现需要执行很长时间),predict则是根据fit形成的体系来判断指定值对应的计算结果。
posted on 2018-06-03 18:49 张叫兽的技术研究院 阅读(1292) 评论(0) 编辑 收藏 举报
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· winform 绘制太阳,地球,月球 运作规律
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人