python线程池(threadpool)模块使用笔记
一、安装与简介
pip install threadpool
pool = ThreadPool(poolsize) requests = makeRequests(some_callable, list_of_args, callback) [pool.putRequest(req) for req in requests] pool.wait()
第一行定义了一个线程池,表示最多可以创建poolsize这么多线程;
第二行是调用makeRequests创建了要开启多线程的函数,以及函数相关参数和回调函数,其中回调函数可以不写,default是无,也就是说makeRequests只需要2个参数就可以运行;
第三行用法比较奇怪,是将所有要运行多线程的请求扔进线程池,[pool.putRequest(req) for req in requests]等同于
for req in requests:
pool.putRequest(req)
第四行是等待所有的线程完成工作后退出。
二、代码实例
import time
def sayhello(str): print "Hello ",str time.sleep(2) name_list =['xiaozi','aa','bb','cc']
start_time = time.time() for i in range(len(name_list)): sayhello(name_list[i]) print '%d second'% (time.time()-start_time)
改用线程池代码,花费时间更少,更效率
import time import threadpool def sayhello(str): print "Hello ",str time.sleep(2) name_list =['xiaozi','aa','bb','cc'] start_time = time.time() pool = threadpool.ThreadPool(10) requests = threadpool.makeRequests(sayhello, name_list) [pool.putRequest(req) for req in requests] pool.wait() print '%d second'% (time.time()-start_time)
当函数有多个参数的情况,函数调用时第一个解包list,第二个解包dict,所以可以这样:
def hello(m, n, o): """""" print "m = %s, n = %s, o = %s"%(m, n, o) if __name__ == '__main__': # 方法1 lst_vars_1 = ['1', '2', '3'] lst_vars_2 = ['4', '5', '6'] func_var = [(lst_vars_1, None), (lst_vars_2, None)] # 方法2 dict_vars_1 = {'m':'1', 'n':'2', 'o':'3'} dict_vars_2 = {'m':'4', 'n':'5', 'o':'6'} func_var = [(None, dict_vars_1), (None, dict_vars_2)] pool = threadpool.ThreadPool(2) requests = threadpool.makeRequests(hello, func_var) [pool.putRequest(req) for req in requests] pool.wait()
需要把所传入的参数进行转换,然后带人线程池。
def getuserdic(): username_list=['xiaozi','administrator'] password_list=['root','','abc123!','123456','password','root'] userlist = [] for username in username_list: user =username.rstrip() for password in password_list: pwd = password.rstrip() userdic ={} userdic['user']=user userdic['pwd'] = pwd tmp=(None,userdic) userlist.append(tmp) return userlist
最后
欢迎关注个人微信公众号:Bypass--,每周原创一篇技术干货。
本文由Bypass整理发布,转载请保留出处。
欢迎关注我的个人微信公众号:Bypass--,浏览更多精彩文章。