背包问题基础模型全解

01背包

Acwing 2. 01背包问题

状态表示:二维

集合:只从前 \(i\) 个物品里面选择总体积 \(\leq j\) 选法的集合

属性:选法价值的最大值

状态计算分为 放 \(i\) 和 不放 \(i\) (要不要把当前物品放进背包):

  • 不放 \(i\) 意味着在前 \(i-1\) 个物品里面选,且总体积不超过 \(j\)
  • \(i\) 的话先来看看里面应该都是些什么东西

如图所示,\(f[i][j]\) 表示的是 \(0\)\(i\) 里面所有选法的权值和的最大值,我们可以将 \(f[i][j]\) 拆成两部分来看待,即 \(f[i-1][j-v[i]]\)\(i\)

那么这两段的权值和为 \(f[i-1][j-v[i]]+w[i]\) ,由于求最大值,所以我们要比较一下那种选择可以使权值最大,于是我们就得到了状态转移方程

\[f[i][j]=max(f[i-1][j],f[i-1][j-v[i]]+w[i]) \]

由于下标不能是负数,所以上述转移方程要求 \(j\geq w[i]\) 。当 \(j<w[i]\) 时,\(f[i][j]=f[i-1][j]\)

综上所述,可以得出:

\[f[i][j]=\left\{ \begin{align} &f[i-1][j],&j<w[i] \\ &max(f[i-1][j],f[i-1][j-v[i]]+w[i]),&j\geq w[i] \end{align} \right. \]

#include <iostream>
using namespace std;
const int N = 1010;
int f[N][N],v[N],w[N];
int n,m;
int main()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++) cin>>v[i]>>w[i];
    for(int i=1;i<=n;i++)
    {
        for(int j=0;j<=m;j++)
        {
            f[i][j]=f[i-1][j];
            if(j>=v[i]) f[i][j]=max(f[i-1][j],f[i-1][j-v[i]]+w[i]);
        }
    }
    cout<<f[n][m];
    return 0;
}

注意题目给的数据,我们的数组的第二维是跟着容量的范围而不是物品数的范围

优化版本:
我们可以发现在 \(f[i][j]\) 的时候只用到了 \(f[i-1][j]\) ,这样 \(f[i-2][j]\)\(f[i-3][j]\) …… 就被浪费掉了,而且,我们二维的状态只用到了\(j\)\(j-w_i\) 都是 \(\leq j\) 不会在两侧,于是我们就可以用滚动数组来优化这个问题

首先,我们直接删除掉 \(i\) 这个状态,那么原方程就会变成:

\[f[j]=\left\{ \begin{align} &f[j],&j<w[i] \\ &max(f[j],f[j-v[i]]+w[i]),&j\geq w[i] \end{align} \right. \]

由于 \(f[j]=f[j]\) 是恒等式,直接删去,由于 \(max(f[j],f[j-v[i]]+w[i])\) 要求 \(j\geq w[i]\) ,所以 \(j\) 直接从 \(w[i]\) 开始枚举

好,接下来再看变形后的式子与原来的方程是否是等价的,答案是否定的

由于我们的 \(j\) 是从小到大枚举的,所以 \(j-v[i]\) 会在 \(j\) 之前被算,相当于二维的 \(f[i][j-v[i]]\) 与原来的方程不符,那么如何解决这个问题呢? 我们可以让 \(j\) 从大到小枚举,这样就保证了当我们计算 \(f[j]\) 的时候 \(f[j-v[i]]\) 因为比 \(j\) 小,所以还没有被更新,用的就是 \(i-1\) 层的 \(f[j-v[i]]\) ,问题解决

01背包如何保证拿一次? 那么当前背包的体积就要去找前面的,而前面的都肯定是没有拿过这个物品的,所以可以保证只拿一次。

当然我们可以边输入边计算,又可以省下数组的空间

#include <iostream>
using namespace std;
const int N = 1010;
int f[N];
int main()
{
    int n,m;
    cin>>n>>m;
    for(int i=1;i<=n;i++)
    {
        int v,w;
        cin>>v>>w;
        for(int j=m;j>=v;j--)
            f[j]=max(f[j],f[j-v]+w);
    }
    cout<<f[m];
    return 0;
}

完全背包

Acwing 3 完全背包问题

状态表示:二维

集合:所有只考虑前 \(i\) 个物品,且总体积 \(\leq j\) 选法的集合

属性:选法价值的最大值

状态计算以第 \(i\) 个物品选几个为划分,注意体积不能超过 \(j\) ,即 \(k×v[i]\leq j\)

注意当 \(k=0\) 时就相当于不选,所以需要从 \(0\) 开始枚举,这里还需要对 \(f[i][j]\) 打擂台,有别于01背包

我们可以得出状态转移方程

\[f[i][j]=max(f[i][j],f[i-1][j-k×v[i]]+w[i]) \]

#include <iostream>
using namespace std;
const int N = 1010;
int f[N][N],v[N],w[N];
int n,m;
int main()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++) cin>>v[i]>>w[i];
    for(int i=1;i<=n;i++)
        for(int j=0;j<=m;j++)
            for(int k=0;k*v[i]<=j;k++)
                f[i][j]=max(f[i][j],f[i-1][j-v[i]*k]+w[i]*k);
    cout<<f[n][m];
    return 0;
}

那么这样的时间复杂度大概是 \(O(m^2n)\) 的,显然不行

我们来想想如何优化

首先,将原方程展开得:

\[f[i][j]=max(f[i-1][j],f[i-1][j-v[i]]+w[i],f[i-1][j-2×v[i]]+2×w[i],...) \]

然后再与 \(f[i][j-v[i]]\) 做一下对比:

\[f[i][j-v[i]]=max(f[i-1][j-v[i]],f[i-1][j-2×v[i]]+w[i],...) \]

那么我们可以发现,\(f[i][j]\) 仅仅比 \(f[i][j-v[i]]\) 多了一个 \(f[i-1][j]\) ,然后后面的每一项都多一个 \(w[i]\)

于是我们就可以将 \(f[i][j-v[i]]\) 加上 \(w[i]\) 转化成 \(f[i-1][j-v[i]]+w[i],f[i-1][j-2×v[i]]+2×w[i],...\)

再与 \(f[i-1][j]\) 比较一下最大值就行了

于是我们就得到了优化后的状态转移方程

\[f[i][j]=\left\{ \begin{align} &f[i-1][j],&j<w[i] \\ &max(f[i-1][j],f[i][j-v[i]]+w[i]),&j\geq w[i] \end{align} \right. \]

#include <iostream>
using namespace std;
const int N = 1010;
int f[N][N],v[N],w[N];
int n,m;
int main()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++) cin>>v[i]>>w[i];
    for(int i=1;i<=n;i++)
        for(int j=0;j<=m;j++)
        {
            if(j>=v[i]) f[i][j]=max(f[i-1][j],f[i][j-v[i]]+w[i]);
            else f[i][j]=f[i-1][j];
        }
            
    cout<<f[n][m];
    return 0;
}

我们可以发现,这个方程跟01背包非常像,所以我们可以按照01背包的思路优化成1维

注意完全背包跟01背包唯一的区别就在于01背包是 \(f[i-1][j-v[i]]+w[i]\) 而完全背包是 \(f[i][j-v[i]]+w[i]\)

完全背包没有 -1 这个问题,所以从小到大遍历,从大到小是不行的,从大到小会使得每个物品就拿一次(参见01背包的优化)

从大到小的话会导致 \(f[j]\)\(f[j-v[i]]\) 之前算,导致算 \(f[j]\) 的时候用的 \(f[j-v[i]\) 的值是 \(i-1\) 层的,变成01背包了

#include <iostream>
using namespace std;
const int N = 1010;
int f[N];
int n,m;
int main()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++)
    {
        int v,w;
        cin>>v>>w;
        for(int j=v;j<=m;j++)
            f[j]=max(f[j],f[j-v]+w);
    }
    cout<<f[m];
    return 0;
}

多重背包

Acwing 4 多重背包问题I

状态表示:二维

集合:所有只从前 \(i\) 个物品中选,并且总体积 \(\leq j\) 选法的集合

属性:每一个选法对应的总价值的最大值

状态计算和完全背包非常像,不过将 \(k\) 枚举结束的条件改成 \(s\)

不过这样的时间复杂度很高,\(O(m^2n)\)

#include <iostream>
using namespace std;
const int N = 105;
int f[N][N];
int v[N],w[N],s[N];
int main()
{
    int n,m;
    cin>>n>>m;
    for(int i=1;i<=n;i++) cin>>v[i]>>w[i]>>s[i];
    for(int i=1;i<=n;i++)
        for(int j=0;j<=m;j++)
            for(int k=0;k<=s[i]&&k*v[i]<=j;k++)
                f[i][j]=max(f[i][j],f[i-1][j-k*v[i]]+w[i]*k);
    cout<<f[n][m];
    return 0;
}

然后我们尝试优化,既然和完全背包很像,我们先来试试通过完全背包的方式优化

首先将原方程展开得:

\[f[i][j]=max(f[i-1][j],f[i-1][j-v[i]]+w[i],f[i-1][j-2×v[i]]+2×w[i],...,f[i-1][j-s[i]×v[i]]+s[i]×w[i]) \]

再对比 \(f[i][j-v[i]]\)

\[f[i][j-v[i]]=max(f[i-1][j-v[i]],f[i-1][j-2×v[i]]+w[i],...,f[i-1][j-s[i]×v[i]]+(s[i]-1)w[i],f[i-1][j-(s[i]+1)w[i]]+s[i]×w[i]) \]

我们发现两个式子很像,不过,\(f[i][j-v[i]]\) 多了一项 \(f[i-1][j-(s[i]+1)w[i]]+s[i]×w[i])\) ,我们不可以通过前 \(n\) 个数的最大值和最后一个数,求出前 \(n-1\) 个数的最大值,所以这样的方法是不可行的

我们可以用二进制的方式来优化
例如当 \(s=1023\) 时,我们真的需要从 \(0\) 枚举到 \(1023\) 吗?
我们可以将若干个 \(i\) 个物品打包,比如说我们可以打包成10组:\(1,2,4,8,...512\)
每组最多选一次,我们可以用这10组凑出来 \(0\)\(1023\) 的任何数(二进制可以表示出所有的十进制整数)

那么对于任何一个 \(s\),我们将物品打包成 \(2^0,2^1,2^2,...,2^k\)\(2^0\) 一直加到 \(2^k \leq s\)
如果 \(2^0\) 一直加到 \(2^k < s\),再补上一个 \(c\)
那么显然有 \(c<2^{k+1}\)
那么来证明一下是不是这样就能表示出 \(0\)\(s\) 的所有数?
首先,\(2^0\) 一直加到 \(2^k\) 能凑出 \(0\)\(2^{k+1}-1\) 的所有数(等比数列公式)
补上 \(c\) 以后便能凑出 \(0\)\(2^{k+1}+c\) 的所有数,\(2^{k+1}+c\)\(s\)
所以是可行的,我们将原本的 \(O(m^2 n)\) 优化到了 \(O(m^2 logn)\)
转化完之后再求一遍01背包就行了
注意我们的打包时数组体积的部分要开 \(log_2 2000×1000\) \(log_22000\) 要上取整得 \(12\)

#include <iostream>
using namespace std;
const int N = 25000;
int n,m;
int v[N],w[N],f[N];
int main()
{
    cin>>n>>m;
    int cnt=0; //重新打包后物品的个数
    for(int i=1;i<=n;i++)
    {
        int a,b,s;
        cin>>a>>b>>s;
        int k=1; //2的k次幂
        while(k<=s)
        {
            cnt++;
            v[cnt]=a*k;
            w[cnt]=b*k;
            s-=k;
            k*=2;
        }
        //补上的c
        if(s>0)
        {
            cnt++;
            v[cnt]=a*s;
            w[cnt]=b*s;
        }
    }
    n=cnt;
    for(int i=1;i<=n;i++)
        for(int j=m;j>=v[i];j--)
            f[j]=max(f[j],f[j-v[i]]+w[i]);
    cout<<f[m];
    return 0;
}

其实还有单调队列的优化方式,不过是提高的内容,等我之后滚回来更新

分组背包

Acwing 9 分组背包问题

状态表示:二维
集合:只从前 \(i\) 个物品里面选,且总体积 \(\leq j\) 的所有选法
属性:选法价值的最大值

状态计算:枚举第 \(i\) 组,物品选第几个或不选
不选也就是 \(f[i-1][j]\)
选第 \(k\) 个也就是 \(f[i-1][j-v[i][k]]+w[i][k]\)
注意 \(k\) 枚举的是下标,所以从0开始

#include <iostream>
using namespace std;
const int N = 105;
int f[N][N],v[N][N],w[N][N],s[N];
int n,m;
int main()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++) 
    {
        cin>>s[i];
        for(int j=0;j<s[i];j++) cin>>v[i][j]>>w[i][j];
    }
    for(int i=1;i<=n;i++)
    {
        for(int j=0;j<=m;j++)
        {
            f[i][j]=f[i-1][j];
            for(int k=0;k<s[i];k++)
            {
                if(v[i][k]<=j) 
                    f[i][j]=max(f[i][j],f[i-1][j-v[i][k]]+w[i][k]);
            }
        }  
    }
    cout<<f[n][m];
    return 0;
}

直接删去一维,得到状态转移方程

\[f[j]=max(f[j],f[j-v[i][k]]+w[i][k]),1\leq k\leq s[i] \]

#include <iostream>
using namespace std;
const int N = 105;
int f[N],s[N],v[N][N],w[N][N];
int n,m;
int main()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++)
    {
        cin>>s[i];
        for(int j=0;j<s[i];j++) cin>>v[i][j]>>w[i][j];
    }
    for(int i=1;i<=n;i++)
        for(int j=m;j>=0;j--)
            for(int k=0;k<s[i];k++)
                if(v[i][k]<=j)
                    f[j]=max(f[j],f[j-v[i][k]]+w[i][k]);
    cout<<f[m];
    return 0;
}

混合背包

Acwing 7 混合背包问题

此为几种背包的模型(01背包、多重背包、完全背包)的综合使用,所以如果弄懂了前几种背包模型,混合背包的问题也会迎刃而解,这里主要介绍一种写法使得代码可读性变高
首先我们知道多重背包实际上是转化为01背包来做的,所以我们如果遇到多重背包时,我们直接将它加进去,最后当作01背包解决就行了
在代码中,我使用了结构体,一个是物品的种类,另外两个是体积和权值
输入多重背包的时候,直接二进制优化好再加进 vector 就行了
最后根据物品类型的不同分别处理就行了

#include <iostream>
#include <vector>
using namespace std;
const int N = 1010;
int f[N];
struct Thing
{
    int kind,v,w;
};
vector<Thing> things;
int main()
{
    int n,m;
    cin>>n>>m;
    for(int i=1;i<=n;i++)
    {
        int v,w,s;
        cin>>v>>w>>s;
        if(s==-1) things.push_back({0,v,w});
        else if(s==0) things.push_back({1,v,w});
        else
        {
            int k=1; 
            while(k<=s)
            {
                things.push_back({0,v*k,w*k});
                s-=k;
                k*=2;
            }
            if(s>0) things.push_back({0,v*s,w*s});
        }
    }
    for(auto thing:things)
    {
        if(thing.kind==0)
        {
            for(int j=m;j>=thing.v;j--) 
            {
                f[j]=max(f[j],f[j-thing.v]+thing.w);
            }
        }
        else
        {
            for(int j=thing.v;j<=m;j++) 
            {
                f[j]=max(f[j],f[j-thing.v]+thing.w);
            }
        }
    }
    cout<<f[m];
    return 0;
}
posted @ 2023-08-13 10:01  typerxiaozhu  阅读(121)  评论(0编辑  收藏  举报