图的最短路径和拓扑排序

图的最短路径

从某顶点出发,沿图的边到达另一顶点所经过的路径中,各边上权值之和最小的一条路径叫做最短路径

图的最短路径有许多重要的应用。

例如:上图中v0-v8有9个点,可以看做不同的地点,现在要规划出v0到其它某个点地点的最短路线规划

构建最短路径中比较常见的一种算法即为dijstra(迪杰斯特拉)算法

 

dijstra(迪杰斯特拉)算法

究竟什么是迪杰斯特拉算法?它是如何寻找图中顶点的最短路径呢?

这个算法的本质,是不断刷新起点与其他各个顶点之间的 “距离表”。

让我们来演示一下迪杰斯特拉的详细过程:

 

第1步,创建距离表。表中的Key是顶点名称,Value是从起点A到对应顶点的已知最短距离。但是,一开始我们并不知道A到其他顶点的最短距离是多少,Value默认是无限大:

 

 

第2步,遍历起点A,找到起点A的邻接顶点B和C。从A到B的距离是5,从A到C的距离是2。把这一信息刷新到距离表当中:

 

 

第3步,从距离表中找到从A出发距离最短的点,也就是顶点C。

第4步,遍历顶点C,找到顶点C的邻接顶点D和F(A已经遍历过,不需要考虑)。从C到D的距离是6,所以A到D的距离是2+6=8;从C到F的距离是8,所以从A到F的距离是2+8=10。把这一信息刷新到表中:

 

 

接下来重复第3步、第4步所做的操作:

第5步,也就是第3步的重复,从距离表中找到从A出发距离最短的点(C已经遍历过,不需要考虑),也就是顶点B。

第6步,也就是第4步的重复,遍历顶点B,找到顶点B的邻接顶点D和E(A已经遍历过,不需要考虑)。从B到D的距离是1,所以A到D的距离是5+1=6,小于距离表中的8;从B到E的距离是6,所以从A到E的距离是5+6=11。把这一信息刷新到表中:

 

 

(在第6步,A到D的距离从8刷新到6,可以看出距离表所发挥的作用。距离表通过迭代刷新,用新路径长度取代旧路径长度,最终可以得到从起点到其他顶点的最短距离)

第7步,从距离表中找到从A出发距离最短的点(B和C不用考虑),也就是顶点D。

第8步,遍历顶点D,找到顶点D的邻接顶点E和F。从D到E的距离是1,所以A到E的距离是6+1=7,小于距离表中的11;从D到F的距离是2,所以从A到F的距离是6+2=8,小于距离表中的10。把这一信息刷新到表中:

 

 

第9步,从距离表中找到从A出发距离最短的点,也就是顶点E。

第10步,遍历顶点E,找到顶点E的邻接顶点G。从E到G的距离是7,所以A到G的距离是7+7=14。把这一信息刷新到表中:

 

 

第11步,从距离表中找到从A出发距离最短的点,也就是顶点F。

第10步,遍历顶点F,找到顶点F的邻接顶点G。从F到G的距离是3,所以A到G的距离是8+3=11,小于距离表中的14。把这一信息刷新到表中:

就这样,除终点以外的全部顶点都已经遍历完毕,距离表中存储的是从起点A到所有顶点的最短距离。显然,从A到G的最短距离是11。(路径:A-B-D-F-G)

 

代码实现:

/**
 * 创建图
 */
public void createGraph(){
    int [] a1 = new int[]{0,1,5,MAX_WEIGHT,MAX_WEIGHT,MAX_WEIGHT,MAX_WEIGHT,MAX_WEIGHT,MAX_WEIGHT};
    int [] a2 = new int[]{1,0,3,7,5,MAX_WEIGHT,MAX_WEIGHT,MAX_WEIGHT,MAX_WEIGHT};
    int [] a3 = new int[]{5,3,0,MAX_WEIGHT,1,7,MAX_WEIGHT,MAX_WEIGHT,MAX_WEIGHT};
    int [] a4 = new int[]{MAX_WEIGHT,7,MAX_WEIGHT,0,2,MAX_WEIGHT,3,MAX_WEIGHT,MAX_WEIGHT};
    int [] a5 = new int[]{MAX_WEIGHT,5,1,2,0,3,6,9,MAX_WEIGHT};
    int [] a6 = new int[]{MAX_WEIGHT,MAX_WEIGHT,7,MAX_WEIGHT,3,0,MAX_WEIGHT,5,MAX_WEIGHT};
    int [] a7 = new int[]{MAX_WEIGHT,MAX_WEIGHT,MAX_WEIGHT,3,6,MAX_WEIGHT,0,2,7};
    int [] a8 = new int[]{MAX_WEIGHT,MAX_WEIGHT,MAX_WEIGHT,MAX_WEIGHT,9,5,2,0,4};
    int [] a9 = new int[]{MAX_WEIGHT,MAX_WEIGHT,MAX_WEIGHT,MAX_WEIGHT,MAX_WEIGHT,MAX_WEIGHT,7,4,0};
    
    matrix[0] = a1;
    matrix[1] = a2;
    matrix[2] = a3;
    matrix[3] = a4;
    matrix[4] = a5;
    matrix[5] = a6;
    matrix[6] = a7;
    matrix[7] = a8;
    matrix[8] = a9;
}

 

package cn.itcast.grape;
import cn.itcast.treeandgrape.Graph;

public class JavaDijstra {
    private final static int MAXVEX = 9;//顶点,以后不需要写死
    private final static int MAXWEING = 65535;//(最大)权重
    private int shortTablePath[] = new int[MAXVEX];//存储V0到某顶点最短路径的权值和 例:{0,1,5}

    /**
     * 获取一个图的最短路径
     */
    public void shortestPathDijstra(Graph graph) {
        int min;//最小值
        int k = 0;//记录下标
        boolean isgetPath[] = new boolean[MAXVEX];//是否已经拿到了V0到Vm的最短路径

        for (int v = 0; v < graph.getVertexSize(); v++) {//遍历顶点数量
            shortTablePath[v] = graph.getMatrix()[0][v];//获得V0这一行的权值数组
        }
        shortTablePath[0] = 0;//V0到V0的距离是0, 拿到数据后,不必往回走
        isgetPath[0] = true;
        for (int v = 1; v < graph.getVertexSize(); v++) {//横向
            min = MAXWEING;//初始化
            for (int w = 0; w < graph.getVertexSize(); w++) {//纵向,对找出来的顶点一个一个遍历
                if (!isgetPath[w] && shortTablePath[w] < min) {
                    k = w;
                    min = shortTablePath[w];
                }
            }
            isgetPath[k] = true;
            for (int j = 0; j < graph.getVertexSize(); j++) {
                if (!isgetPath[j] && (min + graph.getMatrix()[k][j] < shortTablePath[j])) {
                    shortTablePath[j] = min + graph.getMatrix()[k][j];
                }
            }
        }
        for (int i = 0; i < shortTablePath.length; i++) {
            System.out.println("V0到V" + i + "的最短路径为:" + shortTablePath[i] + "\n");
        }
    }

    public static void main(String[] args) {
        Graph graph = new Graph(MAXVEX);
        graph.createGraph();
        JavaDijstra dijstra = new JavaDijstra();
        dijstra.shortestPathDijstra(graph);
    }
}

 

图的拓扑排序

相关概念

AOV网:在一个表示工程的有向图中,用顶点表示活动,用弧表示活动之间的优先关系,这样的有向图为顶点表示活动的网,称为AOV网(Activity On Vertex)。

AVO网不存在环路

 

拓扑序列:设G=(V,E)是一个具有n个顶点的有向图,V中顶点序列V1,V2,......,Vn,满足若从顶点Vi到Vj有一条路径,则在顶点序列中顶点Vi必在顶点Vj之前,则这样的顶点序列称为一个拓扑序列。

拓扑序列并不唯一

 

拓扑排序就是构造拓扑序列的过程,当AOV网中不存在环路时,全部顶点都会被输出。

拓扑排序算法

思想:从AOV网中选择一个入度为0的顶点输出,然后删除此顶点,并删除一次顶点为尾的弧,继续重复该步骤,直至输出全部顶点或者AOV网中不存在入度为0的顶点为止。

由于拓扑排序需要删除顶点,所以使用邻接表的方式存储图会较为方便

 

邻接表结构

 

 邻接表的结构不局限于此,可以根据实际情况添加字段,如在拓扑排序中可以在顶点表中增加入度字段,用于统计每个顶点的入度情况。在带权图中可以在边表中添加weight字段,用于表示每条边的权值。

 

 测试图:

 对应的邻接表结构:

 

 代码实现:

package cn.itcast.grape;

import java.util.Stack;

public class DnGraphTopologic {
    private int numVertexes;
    private VertexNode[] adjList;//邻接顶点的一维数组

    public DnGraphTopologic(int numVertexes) {
        this.numVertexes = numVertexes;
    }

    private void createGraph() {
        VertexNode node0 = new VertexNode(0, "v0");
        VertexNode node1 = new VertexNode(0, "v1");
        VertexNode node2 = new VertexNode(2, "v2");
        VertexNode node3 = new VertexNode(0, "v3");
        VertexNode node4 = new VertexNode(2, "v4");
        VertexNode node5 = new VertexNode(3, "v5");
        VertexNode node6 = new VertexNode(1, "v6");
        VertexNode node7 = new VertexNode(2, "v7");
        VertexNode node8 = new VertexNode(2, "v8");
        VertexNode node9 = new VertexNode(1, "v9");
        VertexNode node10 = new VertexNode(1, "v10");
        VertexNode node11 = new VertexNode(2, "v11");
        VertexNode node12 = new VertexNode(1, "v12");
        VertexNode node13 = new VertexNode(2, "v13");
        adjList = new VertexNode[numVertexes];
        adjList[0] = node0;
        adjList[1] = node1;
        adjList[2] = node2;
        adjList[3] = node3;
        adjList[4] = node4;
        adjList[5] = node5;
        adjList[6] = node6;
        adjList[7] = node7;
        adjList[8] = node8;
        adjList[9] = node9;
        adjList[10] = node10;
        adjList[11] = node11;
        adjList[12] = node12;
        adjList[13] = node13;
        node0.firstEdge = new EdgeNode(11);
        node0.firstEdge.next = new EdgeNode(5);
        node0.firstEdge.next.next = new EdgeNode(4);
        node1.firstEdge = new EdgeNode(8);
        node1.firstEdge.next = new EdgeNode(4);
        node1.firstEdge.next.next = new EdgeNode(2);
        node2.firstEdge = new EdgeNode(9);
        node2.firstEdge.next = new EdgeNode(6);
        node2.firstEdge.next.next = new EdgeNode(5);
        node3.firstEdge = new EdgeNode(13);
        node3.firstEdge.next = new EdgeNode(2);
        node4.firstEdge = new EdgeNode(7);
        node5.firstEdge = new EdgeNode(12);
        node5.firstEdge.next = new EdgeNode(8);
        node6.firstEdge = new EdgeNode(5);
        node8.firstEdge = new EdgeNode(7);
        node9.firstEdge = new EdgeNode(11);
        node9.firstEdge.next = new EdgeNode(10);
        node10.firstEdge = new EdgeNode(13);
        node12.firstEdge = new EdgeNode(9);
    }


    /**
     * 拓扑排序
     */

    private void topologicalSort() throws Exception {
        Stack<Integer> stack = new Stack<>();
        int count = 0;//计数,看拓扑排序是不是正确
        int k = 0;
        for (int i = 0; i < numVertexes; i++) {
            if (adjList[i].in == 0) {
                stack.push(i);
            }
        }

        while (!stack.isEmpty()) {
            int pop = stack.pop();//弹出栈
            System.out.println("顶点:" + adjList[pop].data);
            count++;

            for (EdgeNode node = adjList[pop].firstEdge; node != null; node = node.next) {//横向遍历
                k = node.adjVert;//下标
                if (--adjList[k].in == 0) {
                    stack.push(k);//入度为0,入栈
                }
            }
        }
        
        if (count<numVertexes){
            throw new Exception("拓扑排序失败");
        }
    }

    //边表顶点(横)
    class EdgeNode {
        private int adjVert;//下标
        private EdgeNode next;
        private int weight;//全重,先看有没有权重

        public EdgeNode(int adjVert) {
            this.adjVert = adjVert;
        }

        public int getAdjVert() {
            return adjVert;
        }

        public void setAdjVert(int adjVert) {
            this.adjVert = adjVert;
        }

        public EdgeNode getNext() {
            return next;
        }

        public void setNext(EdgeNode next) {
            this.next = next;
        }

        public int getWeight() {
            return weight;
        }

        public void setWeight(int weight) {
            this.weight = weight;
        }
    }

    //邻接顶点(纵)
    class VertexNode {
        private int in;//入度
        private String data;
        private EdgeNode firstEdge;

        public VertexNode(int in, String data) {
            this.in = in;
            this.data = data;
        }
    }

    public static void main(String[] args) {
        DnGraphTopologic dnGraphTopologic = new DnGraphTopologic(14);
        dnGraphTopologic.createGraph();
        try {
            dnGraphTopologic.topologicalSort();
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

 

posted @ 2019-10-24 17:49  小中配奇  阅读(2249)  评论(1编辑  收藏  举报