04 Seaborn详细操作(二)之数据分布可视化

egon新书python全套来袭请看:https://egonlin.com/book.html

当处理一个数据集的时候,我们经常会想要先看看特征变量是如何分布的。这会让我们对数据特征有个很好的初始认识,同时也会影响后续数据分析以及特征工程的方法。本篇将会介绍如何使用 seaborn 的一些工具来检测单变量和双变量分布情况。

%matplotlib inline
import numpy as np
import pandas as pd
from scipy import stats, integrate
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(color_codes=True)
np.random.seed(sum(map(ord, "distributions")))

注意:这里的数据集是随机产生的分布数据,由 numpy 生成,数据类型是ndarray。当然,pandas 的 Series 数据类型也是可以使用的,比如我们经常需要从 DataFrame 表中提取某一特征(某一列)来查看分布情况。

绘制单变量分布

在 seaborn 中,快速观察单变量分布的最方便的方法就是使用 distplot() 函数。默认会使用柱状图(histogram)来绘制,并提供一个适配的核密度估计(KDE)。

x = np.random.normal(size = 100)
sns.distplot(x)
<matplotlib.axes._subplots.AxesSubplot at 0x1a182da940>
![](https://img2018.cnblogs.com/blog/1825659/201910/1825659-20191011094505425-910095773.png)

直方图(histograms)

直方图是比较常见的,并且在 matplotlib 中已经存在了 hist 函数。直方图在横坐标的数据值范围内均等分的形成一定数量的数据段(bins),并在每个数据段内用矩形条(bars)显示y轴观察数量的方式,完成了对的数据分布的可视化展示。

为了说明这个,我们可以移除 kde plot,然后添加 rug plot(在每个观察点上的垂直小标签)。当然,你也可以使用 rug plot 自带的 rugplot() 函数,但是也同样可以在 distplot 中实现:

sns.distplot(x, kde = False, rug = True)
<matplotlib.axes._subplots.AxesSubplot at 0x1a1867d358>
![](https://img2018.cnblogs.com/blog/1825659/201910/1825659-20191011094747721-2135220689.png)

当绘制直方图时,你最需要确定的参数是矩形条的数目以及如何放置它们。distplot()使用了一个简单的规则推测出默认情况下最合适的数量,但是或多或少的对 bins 数量进行一些尝试也许能找出数据的其它特征:

sns.distplot(x, bins=20, kde=False, rug=True)
<matplotlib.axes._subplots.AxesSubplot at 0x1a1882f8d0>
![](https://img2018.cnblogs.com/blog/1825659/201910/1825659-20191011094844513-585448107.png)

核密度估计(Kernel density estimation)

核密度估计可能不被大家所熟悉,但它对于绘制分布的形状是一个非常有用的工具。就像直方图那样,KDE plots 会在一个轴上通过高度沿着其它轴将观察的密度编码。

sns.distplot(x, hist=False, rug=True);

![](https://img2018.cnblogs.com/blog/1825659/201910/1825659-20191011094856914-261450708.png)

绘制 KDE 比绘制直方图需要更多的计算。它的计算过程是这样的,每个观察点首先都被以这个点为中心的正态分布曲线所替代。

x = np.random.normal(0, 1, size=30)
bandwidth = 1.06 * x.std() * x.size ** (-1 / 5.)
support = np.linspace(-4, 4, 200)

kernels = []
for x_i in x:

    kernel = stats.norm(x_i, bandwidth).pdf(support)
    kernels.append(kernel)
    plt.plot(support, kernel, color="r")

sns.rugplot(x, color=".2", linewidth=3);

![](https://img2018.cnblogs.com/blog/1825659/201910/1825659-20191011094906872-477743327.png)
然后,这些替代的曲线进行加和,并计算出在每个点的密度值。最终生成的曲线被归一化,以使得曲线下面包围的面积是1。
density = np.sum(kernels, axis=0)
density /= integrate.trapz(density, support)
plt.plot(support, density)

[<matplotlib.lines.Line2D at 0x1a18bf3048>]

![](https://img2018.cnblogs.com/blog/1825659/201910/1825659-20191011094917723-1511400184.png)

我们可以看到,如果我们使用 kdeplot() 函数,我们可以得到相同的曲线。这个函数实际上也被 distplot() 所使用,但是如果你就只想要密度估计,那么 kdeplot() 会提供一个直接的接口更简单的操作其它选项。

sns.kdeplot(x, shade=True)

<matplotlib.axes._subplots.AxesSubplot at 0x1a18c8b518>

![](https://img2018.cnblogs.com/blog/1825659/201910/1825659-20191011094956772-1058794987.png)

KDE 的带宽参数(bw)控制着密度估计曲线的宽窄形状,有点类似直方图中的 bins 参数的作用。它对应着我们上面绘制的 KDE 的宽度。默认情况下,函数会按照一个通用的参考规则来估算出一个合适的值,但是尝试更大或者更小也可能会有帮助:

sns.kdeplot(x)
sns.kdeplot(x, bw=.2, label="bw: 0.2")
sns.kdeplot(x, bw=2, label="bw: 2")
plt.legend()

![](https://img2018.cnblogs.com/blog/1825659/201910/1825659-20191011095006241-1787920409.png)

如上所述,高斯KDE过程的意味着估计延续了数据集中最大和最小的值。 可以通过cut参数来控制绘制曲线的极值值的距离; 然而,这只影响曲线的绘制方式,而不是曲线如何拟合:

sns.kdeplot(x, shade=True, cut=0)
sns.rugplot(x);

![](https://img2018.cnblogs.com/blog/1825659/201910/1825659-20191011095015542-1374075787.png)

拟合参数分布

也可以使用distplot()将参数分布拟合到数据集,并可视化地评估其与观察数据的对应程度:

x = np.random.gamma(6, size=200)
sns.distplot(x, kde=False, fit=stats.gamma);

![](https://img2018.cnblogs.com/blog/1825659/201910/1825659-20191011095026067-1084582552.png)

绘制双变量分布

对于双变量分布的可视化也是非常有用的。在 seaborn 中最简单的方法就是使用 joinplot() 函数,它能够创建一个多面板图形来展示两个变量之间的联合关系,以及每个轴上单变量的分布情况。

mean, cov = [0, 1], [(1, .5), (.5, 1)]
data = np.random.multivariate_normal(mean, cov, 200)
df = pd.DataFrame(data, columns=["x", "y"])

Scatterplots

双变量分布最熟悉的可视化方法无疑是散点图了,在散点图中每个观察结果以x轴和y轴值所对应的点展示。你可以用 matplotlib 的 plt.scatter 函数来绘制一个散点图,它也是jointplot()函数显示的默认方式。

sns.jointplot(x="x", y="y", data=df)

<seaborn.axisgrid.JointGrid at 0x1a18df47f0>

![](https://img2018.cnblogs.com/blog/1825659/201910/1825659-20191011095043091-621861615.png)
## Hexbin plots

直方图 histogram 的双变量类似图被称为 “hexbin” 图,因为它展示了落在六角形箱内的观测量。这种绘图对于相对大的数据集效果最好。它可以通过 matplotlib 的 plt.hexbin 函数使用,也可以作为 jointplot 的一种类型参数使用。它使用白色背景的时候视觉效果最好。

x, y = np.random.multivariate_normal(mean, cov, 1000).T
with sns.axes_style("white"):
    sns.jointplot(x=x, y=y, kind="hex", color="k");

![](https://img2018.cnblogs.com/blog/1825659/201910/1825659-20191011095056038-369205832.png)

Kernel density estimation

还使用上面描述的核密度估计过程来可视化双变量分布。在 seaborn 中,这种绘图以等高线图展示,并且可以作为 jointplot()的一种类型参数使用。

sns.jointplot(x="x", y="y", data=df, kind="kde");

![](https://img2018.cnblogs.com/blog/1825659/201910/1825659-20191011095105293-297506864.png)

如果你希望让双变量密度看起来更连续,您可以简单地增加 n_levels 参数增加轮廓级数:

f, ax = plt.subplots(figsize=(6, 6))
cmap = sns.cubehelix_palette(as_cmap=True, dark=0, light=1, reverse=True)
sns.kdeplot(df.x, df.y, cmap=cmap, n_levels=60, shade=True);

![](https://img2018.cnblogs.com/blog/1825659/201910/1825659-20191011095114260-2048974893.png)

jointplot()函数使用JointGrid来管理图形。为了获得更多的灵活性,您可能需要直接使用JointGrid绘制图形。jointplot()在绘制后返回JointGrid对象,你可以用它来添加更多层或调整可视化的其他方面:

g = sns.jointplot(x="x", y="y", data=df, kind="kde", color="m")
g.plot_joint(plt.scatter, c="w", s=30, linewidth=1, marker="+")
g.ax_joint.collections[0].set_alpha(0)
g.set_axis_labels("$X$", "$Y$");

![](https://img2018.cnblogs.com/blog/1825659/201910/1825659-20191011095122374-194973119.png)

可视化数据集成对关系

为了绘制数据集中多个成对的双变量,你可以使用 pairplot() 函数。这创建了一个轴矩阵,并展示了在一个 DataFrame 中每对列的关系。默认情况下,它也绘制每个变量在对角轴上的单变量。

iris = sns.load_dataset("iris")
sns.pairplot(iris)

<seaborn.axisgrid.PairGrid at 0x1a19742278>

![](https://img2018.cnblogs.com/blog/1825659/201910/1825659-20191011095134618-859289127.png)

就像 joinplot() 和 JoinGrid 之间的关系,pairplot() 函数建立在 PairGrid 对象之上,直接使用可以更灵活。

g = sns.PairGrid(iris)
g.map_diag(sns.kdeplot)
g.map_offdiag(sns.kdeplot, cmap="Blues_d", n_levels=6)

<seaborn.axisgrid.PairGrid at 0x1a1b5ed978>

![](https://img2018.cnblogs.com/blog/1825659/201910/1825659-20191011095145912-935857805.png)
> 参考:[http://seaborn.pydata.org/tutorial.html](http://seaborn.pydata.org/tutorial.html)
posted @ 2019-10-11 09:52  小猿取经-林海峰老师  阅读(971)  评论(1编辑  收藏  举报