流量汇总(自定义jar包,在hadoop集群上 统计,排序,分组)之统计
小知识点:
half:关机
yarn端口:8088
删除hdfs目录:hadoop fs -rm -r /wc/output
namenode两个状态都是standby原因:zookeeper没有比hdfs先启动
现在来做一个流量统计的例子:
首先数据是这样一张表:见附件
统计:(代码)
1,flowbean:
package cn.itcast.hadoop.mr.flowsum;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.io.WritableComparable;
public class FlowBean implements WritableComparable<FlowBean> {
private String phoneNB;
private long up_flow;
private long d_flow;
private long s_flow;
//在反序列化时候反射机制需要调用空参数构造方法,所以显示定义了一个空参构造函数
public FlowBean() {}
//为了对象数据的初始化方便,加入一个带参数的构造函数
public FlowBean(String phoneNB, long up_flow, long d_flow) {
super();
this.phoneNB = phoneNB;
this.up_flow = up_flow;
this.d_flow = d_flow;
this.s_flow = up_flow+d_flow;
}
@Override
public String toString() {
return ""+up_flow +"\t" +d_flow + "\t"+ s_flow;
}
public String getPhoneNB() {
return phoneNB;
}
public void setPhoneNB(String phoneNB) {
this.phoneNB = phoneNB;
}
public long getUp_flow() {
return up_flow;
}
public void setUp_flow(long up_flow) {
this.up_flow = up_flow;
}
public long getD_flow() {
return d_flow;
}
public void setD_flow(long d_flow) {
this.d_flow = d_flow;
}
public long getS_flow() {
return s_flow;
}
public void setS_flow(long s_flow) {
this.s_flow = s_flow;
}
//从数据流中反序列化出对象的数据
// 从数据流中独处对象字段时候,必须跟序列化的顺序保持一致
@Override
public void readFields(DataInput in) throws IOException {
phoneNB = in.readUTF();
up_flow=in.readLong();
d_flow=in.readLong();
s_flow=in.readLong();
}
//将对象数据序列化到流中
@Override
public void write(DataOutput out) throws IOException {
out.writeUTF(phoneNB);
out.writeLong(up_flow);
out.writeLong(d_flow);
out.writeLong(s_flow);
}
//比较,在这里实现了排序
@Override
public int compareTo(FlowBean o) {
return s_flow>o.getS_flow()?-1:1;
}
}
2,flowsumMapper:
package cn.itcast.hadoop.mr.flowsum;
import java.io.IOException;
import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
/**
* @author yw.wang
* FlowBean 是我们自定义的一种数据类型,要在hadoop的各个节点之间传输,所以应该遵循hadoop的序列化机制
* 就必须实现hadoop的序列化接口
*
*/
public class FlowSumMapper extends Mapper<LongWritable, Text, Text, FlowBean> {
// 拿到日志中的一行数据,切分各个字段,抽取我们需要的字段:手机号,上行流量,下行流量,然后封装成kv类型发送出去,到reduce
@Override
protected void map(LongWritable key, Text value,Context context)
throws IOException, InterruptedException {
//拿一行数据
String line = value.toString();
//切分成各个字段
String[] fields = StringUtils.split(line,"\t");
//拿到我们需要的字段
String phoneNB = fields[0];
long u_flow =Long.parseLong(fields[7]);
long d_flow =Long.parseLong(fields[8]);
//封装数据为kv类型并输出
context.write(new Text(phoneNB), new FlowBean(phoneNB,u_flow,d_flow));
}
}
3,flowsumreducer
package cn.itcast.hadoop.mr.flowsum;
import java.io.IOException;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class FlowSumReducer extends Reducer<Text, FlowBean, Text, FlowBean>{
//框架每传递一组数据<1237435262,{flowbean,flowbean,flowbean....}>
//reduce中的业务逻辑就是遍历values,然后进行累加求和再输出
@Override
protected void reduce(Text key, Iterable<FlowBean> values,Context context)
throws IOException, InterruptedException {
long up_flow_counter= 0;
long d_flow_counter=0;
for (FlowBean bean : values) {
up_flow_counter +=bean.getUp_flow();
d_flow_counter+=bean.getD_flow();
}
context.write(key, new FlowBean(key.toString(),up_flow_counter,d_flow_counter));
}
}
4,flowsumrunner:
package cn.itcast.hadoop.mr.flowsum;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputFormat;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.OutputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
//这是job描述和提交类的规范写法
public class FlowSumRunner extends Configured implements Tool{
@Override
public int run(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
job.setJarByClass(FlowSumRunner.class);
job.setMapperClass(FlowSumMapper.class);
job.setReducerClass(FlowSumReducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(FlowBean.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(FlowBean.class);
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
return job.waitForCompletion(true)?0:1;
}
public static void main(String[] args) throws Exception {
int res = ToolRunner.run(new Configuration(), new FlowSumRunner(), args);
System.exit(res);
}
}
打成jar包:
在集群中使用命令:
hadoop jar /root/Documents/sum.jar cn.itcast.hadoop.mr.flowsum.FlowSumRunner /wc/data/ /wc/sumoutput
解释:
排序:
代码:
package cn.itcast.hadoop.mr.flowsort;
import java.io.IOException;
import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import cn.itcast.hadoop.mr.flowsum.FlowBean;
public class SortMR {
public static class SortMapper extends Mapper<LongWritable, Text, FlowBean, NullWritable>{
//拿到一行数据,切分出各字段,封装为一个flowbean,作为key输出
@Override
protected void map(LongWritable key, Text value,Context context)
throws IOException, InterruptedException {
String line = value.toString();
String[] fields = StringUtils.split(line, "\t");
String phoneNB = fields[0];
long u_flow = Long.parseLong(fields[1]);
long d_flow = Long.parseLong(fields[2]);
context.write(new FlowBean(phoneNB, u_flow, d_flow), NullWritable.get());
}
}
public static class SortReducer extends Reducer<FlowBean, NullWritable, Text, FlowBean>{
@Override
protected void reduce(FlowBean key, Iterable<NullWritable> values,Context context)
throws IOException, InterruptedException {
String phoneNB = key.getPhoneNB();
context.write(new Text(phoneNB), key);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
// main方法所在的类,此处表示自身的类
job.setJarByClass(SortMR.class);
//会代表map,reduce的output,如果不一样可以申明mapoutput类型,像下面的一样
job.setMapperClass(SortMapper.class);
job.setReducerClass(SortReducer.class);
// mapoutput类型
job.setMapOutputKeyClass(FlowBean.class);
job.setMapOutputValueClass(NullWritable.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(FlowBean.class);
//这两个参数正好是 hadoop jar 。。 最后两个参数
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
//标准输出
System.exit(job.waitForCompletion(true)?0:1);
}
}
排序是针对统计的结果进行排序,故数据元是统计完成之后的00000success那个文件
分组:
FlowSumArea :
package cn.itcast.hadoop.mr.areapartition;
import java.io.IOException;
import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.metrics2.impl.ConfigBuilder;
import cn.itcast.hadoop.mr.flowsum.FlowBean;
/**
* 对流量原始日志进行流量统计,将不同省份的用户统计结果输出到不同文件
* 需要自定义改造两个机制
* 1,改造分区的逻辑,自定义一个partitioneer
* 2,自定义reduer task的并发任务数
*/
public class FlowSumArea {
public static class FlowSumAreaMapper extends Mapper<LongWritable, Text, Text, FlowBean>{
@Override
protected void map(LongWritable key, Text value,Context context)
throws IOException, InterruptedException {
//拿一行数据
String line = value.toString();
//切分成各个字段
String[] fields = StringUtils.split(line,"\t");
//拿到我们的字段
String phoneNB = fields[1];
long u_flow = Long.parseLong(fields[7]);
long d_flow = Long.parseLong(fields[8]);
//封装数据为kv并输出
context.write(new Text(phoneNB), new FlowBean(phoneNB,u_flow,d_flow));
}
}
public static class FlowSumAreaReducer extends Reducer<Text, FlowBean, Text, FlowBean>{
@Override
protected void reduce(Text key, Iterable<FlowBean> values,Context context)
throws IOException, InterruptedException {
long up_flow_counter = 0;
long d_flow_counter = 0;
for (FlowBean bean : values) {
up_flow_counter +=bean.getUp_flow();
d_flow_counter += bean.getD_flow();
}
context.write(key, new FlowBean(key.toString(),up_flow_counter,d_flow_counter));
}
}
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
job.setJarByClass(FlowSumArea.class);
//job.setMapperClass(FlowSumAreaMapper.class);
job.setMapperClass(FlowSumAreaMapper.class);
job.setReducerClass(FlowSumAreaReducer.class);
//设置我们自定义的分组逻辑定义
job.setPartitionerClass(AreaPartitioner.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(FlowBean.class);
//设置reduce的任务并发数,应该跟分组的数量保持一致
job.setNumReduceTasks(6);
//进程数如果大了,后面的文件为空,小了会出现错误,为1则没有分组
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true)?0:1);
}
}
AreaPartitioner :
package cn.itcast.hadoop.mr.areapartition;
import java.util.HashMap;
import org.apache.hadoop.mapreduce.Partitioner;
public class AreaPartitioner<KEY, VALUE> extends Partitioner<KEY, VALUE> {
private static HashMap<String,Integer> areaMap = new HashMap<>();
static{
areaMap.put("135", 0);
areaMap.put("136", 1);
areaMap.put("137", 2);
areaMap.put("138", 3);
areaMap.put("139", 4);
}
@Override
public int getPartition(KEY key, VALUE value, int numPartitions) {
//从key中拿到手机号,查询手机归属地字典,不同省份返回不同的组号
int areaCoder = areaMap.get(key.toString().substring(0,3))==null?5:areaMap.get(key.toString().substring(0,3));
return areaCoder;
}
}
运行:
hadoop jar /root/Documents/area.jar cn.itcast.hadoop.mr.areapartition.FlowSumArea /wc/data /wc/areasoutput
至此,mapreduce的流量统计,分组,排序工作完成了
附件列表