HashMap
1、开始 public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable 继承了抽象类AbstractMap,实现了Map接口,Cloneable接口(可克隆),Serializable接口(可序列化) 2、属性 //默认初始化容量为16,容量必须是2的n次幂 static final int DEFAULT_INITIAL_CAPACITY = 16; //最大容量为2的20次幂,再大就是Integer.MAX_VALUE static final int MAXIMUM_CAPACITY = 1 << 30; //默认加载因子为0.75 static final float DEFAULT_LOAD_FACTOR = 0.75f; //Entry数组,其就是链表散列的数据结构,即数组+链表 transient Entry<K,V>[] table; //已存储元素的数量 transient int size; //扩容的临界值,只要存储元素的数量大于该临界值,就会自动扩容,其中threshold=capacity*load_factor int threshold; //加载因子 final float loadFactor; //更改次数 transient int modCount; 3、存储数据结构Entry static class Entry<K,V> implements Map.Entry<K,V> { final K key; V value; Entry<K,V> next; int hash; Entry(int h, K k, V v, Entry<K,V> n) { value = v; next = n; key = k; hash = h; } public final K getKey() { return key; } public final V getValue() { return value; } public final V setValue(V newValue) { V oldValue = value; value = newValue; return oldValue; } public final boolean equals(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry)o; Object k1 = getKey(); Object k2 = e.getKey(); if (k1 == k2 || (k1 != null && k1.equals(k2))) { Object v1 = getValue(); Object v2 = e.getValue(); if (v1 == v2 || (v1 != null && v1.equals(v2))) return true; } return false; } public final int hashCode() { return (key==null ? 0 : key.hashCode()) ^ (value==null ? 0 : value.hashCode()); } public final String toString() { return getKey() + "=" + getValue(); } //当向HashMap添加元素时调用该方法 void recordAccess(HashMap<K,V> m) { } //当从HashMap中删除元素时调用该方法 void recordRemoval(HashMap<K,V> m) { } } 4、构造器 public HashMap(int initialCapacity, float loadFactor) { //校验容量大小 if (initialCapacity < 0) throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity); //初始化容量大小的最大值 if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; //校验加载因子 if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal load factor: " + loadFactor); //获取容量大小,使之是2的n次幂 // Find a power of 2 >= initialCapacity int capacity = 1; while (capacity < initialCapacity) capacity <<= 1; //赋值 //加载因子 this.loadFactor = loadFactor; //扩容的临界值 threshold = (int)Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1); //存储元素的数组 table = new Entry[capacity]; //用于元素计算Hash值,定位元素在数组中的位置 useAltHashing = sun.misc.VM.isBooted() && (capacity >= Holder.ALTERNATIVE_HASHING_THRESHOLD); //初始化时的一些其他操作 init(); } //指定初始容量 public HashMap(int initialCapacity) { this(initialCapacity, DEFAULT_LOAD_FACTOR); } //使用默认容量和默认加载因子 public HashMap() { this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR); } //使用现有元素,和默认加载因子 public HashMap(Map<? extends K, ? extends V> m) { this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1, DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR); putAllForCreate(m); } 5、添加 public V put(K key, V value) { //当key为null时,存储在数组的第0个位置 if (key == null) return putForNullKey(value); //计算HashCode值 int hash = hash(key); //定位在数组中的位置,即确定该元素所在的链表 int i = indexFor(hash, table.length); for (Entry<K,V> e = table[i]; e != null; e = e.next) { Object k; //对比hash值以及Key是否相等 if (e.hash == hash && ((k = e.key) == key || key.equals(k))) { //如果存在,则将旧值替换为新值 V oldValue = e.value; e.value = value; e.recordAccess(this); //返回旧值 return oldValue; } } //更改次数 modCount++; //在当前数组的i位置的链表中新增一节点 addEntry(hash, key, value, i); return null; } private V putForNullKey(V value) { //key为null,其必在HashMap的第0个数组中 for (Entry<K,V> e = table[0]; e != null; e = e.next) { if (e.key == null) { //当已存在,则替换 V oldValue = e.value; e.value = value; e.recordAccess(this); return oldValue; } } modCount++; //新增,hash=0,bucketIndex=0 addEntry(0, null, value, 0); return null; } void addEntry(int hash, K key, V value, int bucketIndex) { //当前元素数量已经达到扩容临界点,则进行扩容 if ((size >= threshold) && (null != table[bucketIndex])) { //扩容,为原来的2倍 resize(2 * table.length); //重新计算当前key的hash值, hash = (null != key) ? hash(key) : 0; //以及在数组中的位置 bucketIndex = indexFor(hash, table.length); } //为链表添加一新节点 createEntry(hash, key, value, bucketIndex); } void createEntry(int hash, K key, V value, int bucketIndex) { //使用前插法,即新插入的元素必定在链表的头部 Entry<K,V> e = table[bucketIndex]; table[bucketIndex] = new Entry<>(hash, key, value, e); //元素数量加1 size++; } void resize(int newCapacity) { //获取当前数组的引用,作为本地变量 Entry[] oldTable = table; //老的数组的长度 int oldCapacity = oldTable.length; if (oldCapacity == MAXIMUM_CAPACITY) { //当前数组容量已经是最大时,则不需要进行扩容 threshold = Integer.MAX_VALUE; return; } //创建新的数组 Entry[] newTable = new Entry[newCapacity]; boolean oldAltHashing = useAltHashing; useAltHashing |= sun.misc.VM.isBooted() && (newCapacity >= Holder.ALTERNATIVE_HASHING_THRESHOLD); //是否进行hash值重算 boolean rehash = oldAltHashing ^ useAltHashing; //数组元素迁移到新数组中 transfer(newTable, rehash); //最后将新数组引用赋给HashMap table = newTable; //重新计算扩容临界值 threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1); } void transfer(Entry[] newTable, boolean rehash) { //新数组长度 int newCapacity = newTable.length; for (Entry<K,V> e : table) { //遍历数组中的每一个元素,即每一个链表 while(null != e) { //将每一个链表迁移到新数组中 //记录当前节点的下一个节点,用于下次迁移 Entry<K,V> next = e.next; if (rehash) { //是否对当前节点的hash重计算 e.hash = null == e.key ? 0 : hash(e.key); } //重新定位该元素在新数组中的位置 int i = indexFor(e.hash, newCapacity); //将新数组中该位置的链表元素都放在该元素后面,使用的是前插法 e.next = newTable[i]; //将链表挂在新数组中 newTable[i] = e; //继续下一个节点的迁移 e = next; } } } 6、删除 public V remove(Object key) { //获取需要删除的key对应的元素 Entry<K,V> e = removeEntryForKey(key); //返回该元素上的值 return (e == null ? null : e.value); } final Entry<K,V> removeEntryForKey(Object key) { //计算该key的hash int hash = (key == null) ? 0 : hash(key); //定位该key的在数组中的位置 int i = indexFor(hash, table.length); //找到链表的第一个节点 Entry<K,V> prev = table[i]; Entry<K,V> e = prev; //遍历链表 while (e != null) { //当前节点的下一个节点,也是下一次遍历所需要的节点 Entry<K,V> next = e.next; Object k; if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { //若当前节点是所要删除的节点,即hash相等和key也相等 //更改次数 modCount++; //元素数量减1 size--; if (prev == e) //当要删除的节点是链表的头结点时,则只需要将当前节点的下一个节点作为该链表的头结点,即可 table[i] = next; else //当删除的节点不是链表的头结点时,则只需要当前节点的前一个节点的下一个是当前节点的下一个节点,即可 prev.next = next; //删除记录 e.recordRemoval(this); //返回删除的节点 return e; } prev = e; e = next; } //返回要删除的节点 return e; } 7、访问和查找 //根据key查找元素 public V get(Object key) { if (key == null) //当key为null时,从数组的第0个位置查找 return getForNullKey(); //根据key查找 Entry<K,V> entry = getEntry(key); return null == entry ? null : entry.getValue(); } private V getForNullKey() { //从数组的第0个位置的链表头部开始查找 for (Entry<K,V> e = table[0]; e != null; e = e.next) { //当存在一个key为null的节点时 if (e.key == null) //返回该节点中的值 return e.value; } return null; } //是否包含键 public boolean containsKey(Object key) { return getEntry(key) != null; } final Entry<K,V> getEntry(Object key) { //计算该key对应的hash int hash = (key == null) ? 0 : hash(key); //定位在数组中的位置,即找到某张链表,之后从该链表的头部开始遍历 for (Entry<K,V> e = table[indexFor(hash, table.length)]; e != null; e = e.next) { Object k; if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) //当hash相等,key也想等时,返回该节点 return e; } return null; } //是否包含值 public boolean containsValue(Object value) { if (value == null) //当值为null时 return containsNullValue(); Entry[] tab = table; //遍历当前数组,以及每一个链表 for (int i = 0; i < tab.length ; i++) for (Entry e = tab[i] ; e != null ; e = e.next) if (value.equals(e.value)) return true; return false; } private boolean containsNullValue() { //值为null Entry[] tab = table; //遍历当前数组,以及每一个链表 for (int i = 0; i < tab.length ; i++) for (Entry e = tab[i] ; e != null ; e = e.next) if (e.value == null) return true; return false; } 8、迭代器 //用于HashMap的迭代器抽象类 private abstract class HashIterator<E> implements Iterator<E> { Entry<K,V> next; // next entry to return int expectedModCount; // For fast-fail int index; // current slot Entry<K,V> current; // current entry HashIterator() { expectedModCount = modCount; if (size > 0) { // advance to first entry Entry[] t = table; while (index < t.length && (next = t[index++]) == null) ; } } public final boolean hasNext() { return next != null; } final Entry<K,V> nextEntry() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); Entry<K,V> e = next; if (e == null) throw new NoSuchElementException(); if ((next = e.next) == null) { Entry[] t = table; while (index < t.length && (next = t[index++]) == null) ; } current = e; return e; } public void remove() { if (current == null) throw new IllegalStateException(); if (modCount != expectedModCount) throw new ConcurrentModificationException(); Object k = current.key; current = null; HashMap.this.removeEntryForKey(k); expectedModCount = modCount; } } //值迭代器类 private final class ValueIterator extends HashIterator<V> { public V next() { return nextEntry().value; } } //键迭代器类 private final class KeyIterator extends HashIterator<K> { public K next() { return nextEntry().getKey(); } } //Entry迭代器类 private final class EntryIterator extends HashIterator<Map.Entry<K,V>> { public Map.Entry<K,V> next() { return nextEntry(); } } //获取键迭代器对象 // Subclass overrides these to alter behavior of views' iterator() method Iterator<K> newKeyIterator() { return new KeyIterator(); } //获取值迭代器对象 Iterator<V> newValueIterator() { return new ValueIterator(); } //获取Entry迭代器类对象 Iterator<Map.Entry<K,V>> newEntryIterator() { return new EntryIterator(); } private transient Set<Map.Entry<K,V>> entrySet = null; transient volatile Set<K> keySet = null; transient volatile Collection<V> values = null; //获取HashMap中的所有键对Set public Set<K> keySet() { Set<K> ks = keySet; return (ks != null ? ks : (keySet = new KeySet())); } private final class KeySet extends AbstractSet<K> { //获取迭代器 public Iterator<K> iterator() { return newKeyIterator(); } //Set大小 public int size() { return size; } //是否包含 public boolean contains(Object o) { return containsKey(o); } //删除元素 public boolean remove(Object o) { return HashMap.this.removeEntryForKey(o) != null; } //清空 public void clear() { HashMap.this.clear(); } } //获取HashMap中的所有值对Collection public Collection<V> values() { Collection<V> vs = values; return (vs != null ? vs : (values = new Values())); } private final class Values extends AbstractCollection<V> { //获取迭代器 public Iterator<V> iterator() { return newValueIterator(); } //Collection大小 public int size() { return size; } //是否包含 public boolean contains(Object o) { return containsValue(o); } //清空 public void clear() { HashMap.this.clear(); } } //获取HashMap中的所有键值对Set public Set<Map.Entry<K,V>> entrySet() { return entrySet0(); } private Set<Map.Entry<K,V>> entrySet0() { Set<Map.Entry<K,V>> es = entrySet; return es != null ? es : (entrySet = new EntrySet()); } private final class EntrySet extends AbstractSet<Map.Entry<K,V>> { //获取迭代器 public Iterator<Map.Entry<K,V>> iterator() { return newEntryIterator(); } //是否包含 public boolean contains(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry<K,V> e = (Map.Entry<K,V>) o; Entry<K,V> candidate = getEntry(e.getKey()); return candidate != null && candidate.equals(e); } //删除元素 public boolean remove(Object o) { return removeMapping(o) != null; } //Set大小 public int size() { return size; } //清空 public void clear() { HashMap.this.clear(); } } 9、清空所有元素 public void clear() { modCount++; Entry[] tab = table; for (int i = 0; i < tab.length; i++) tab[i] = null; size = 0; } 参考资料: http://www.cnblogs.com/tstd/p/5055286.html http://tengj.top/2016/04/15/javajh3hashmap/