一、平衡二叉树

 

 

 

解法1:递归自顶向下(类似于先序遍历)。先计算每个节点的高度,再判断每个节点是否是平衡二叉树。

# Definition for a binary tree node.
# class TreeNode(object):
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution(object):
    def isBalanced(self, root):
        """
        :type root: TreeNode
        :rtype: bool
        """
        def inner(root):
            if root == None:
                return 0 
            return max(inner(root.left),inner(root.right)) + 1
        if root == None:
            return True
        return abs(inner(root.left)-inner(root.right)) <=1 and self.isBalanced(root.left) and self.isBalanced(root.right)
            

 

解法2:自底向上(类似于后序遍历)。

 

二、二叉树最小深度

 

 

解法:与二叉树的最大深度类似,只是计算深度的条件需要修改一下。(类似于后序遍历)

 

# Definition for a binary tree node.
# class TreeNode(object):
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution(object):
    def minDepth(self, root):
        """
        :type root: TreeNode
        :rtype: int
        """
        #寻找最深的左节点
        if root ==None:
            return 0
        def inner_find_left(root,stack_temp):
            while root != None:
                stack_temp.append(root)
                root = root.left
            return stack_temp
        stack = []
        stack = inner_find_left(root,stack)
        min_depth = 1000000
        pre_node =None
        while stack:
            #2、判断栈中最后一个节点的右节点是否为空,如果不为空则继续向下寻找
            temp = stack[-1]
            if temp.right != None and temp.right != pre_node:
                stack = inner_find_left(temp.right,stack)
                continue
            #3、如果最后一节点为叶子,则计算深度
            if temp.left == None and temp.right ==None:
                min_depth =  min(min_depth,len(stack))
            pre_node = stack.pop(-1)
        return min_depth

 

 posted on 2022-01-06 21:29  佩剑君子  阅读(93)  评论(0编辑  收藏  举报