面向对象设计原则

单一职责原则


单一职责原则,SRP(The Single – Responsibility Principle)规定,一个类只能有一个引起它变化的原因。在SRP中,我们定义一个类的职责就是”改变它的原因“。如果你能想到N个动机去改变一个类,那么这个类就具有多于一个的职责。
原因:如果一个类负责了两个职责P1和P2,那么当我们需要更改P1时,可能会造成P2发生故障。
解决方案:遵循单一职责原则。分别建立两个类T1、T2,使T1完成职责P1功能,T2完成职责P2功能。这样,当修改类T1时,不会使职责P2发生故障风险;同理,当修改T2时,也不会使职责P1发生故障风险。
例如:

上图中Rectangle有两个职责,这就违反了SRP原则。我们可以拆分这个类来使它满足SRP。


遵循单一职责原的优点有:
  • 可以降低类的复杂度,一个类只负责一项职责,其逻辑肯定要比负责多项职责简单的多;
  • 提高类的可读性,提高系统的可维护性;
  • 变更引起的风险降低,变更是必然的,如果单一职责原则遵守的好,当修改一个功能时,可以显著降低对其他功能的影响。
单一职责原则可以用于接口、类、方法的设计中。我们先来看一个关于接口设计的例子。
很多软件都需要管理用户信息,我们经常可以看到如下的接口设计,很简单嘛,get()和set()我们都已经很熟悉了~

(其实我之前很多类都是这么设计的……)但是,这其实存在很大的问题,因为这个接口没有把业务对象(BO,Business Object)和业务逻辑(Business Logic)分离开来,它显得太大了,负责了太多职责。因此,我们可以拆分成下面两个接口。


当然,真实的软件中还是很难完全遵循SRP的,这是因为职责扩散的存在。所谓职责扩散,就是因为某种原因,职责P被分化为粒度更细的职责P1和P2。在最开始的设计中,我们的确可以设计出完全符合SRP的类,但随着业务的改变和复杂度加大,某个职责P可以被扩展为P1、P2、P3……这对代码重构带来了很大麻烦。
一个比较通用的原则是:接口一定要符合单一职责原则;只有逻辑足够简单,才可以在代码级别上(即直接在原有代码的基础上修改代码)违反单一职责原则;只有类中方法数量足够少,才可以在方法级别上(即不改变类中的原有方法,而是增添新的方法)违反单一职责原则。
然而一个职责的划分也往往是不确定的。多大的颗粒度才好?一个建议是,如果你觉得一个职责还可以拆分成两个毫无关系的(即一个改变不会影响到另一个)职责,那么原来的职责划分就有些大了,你应该把它划分到两个不同的接口里去。
规则是死的,人是活的。当然具体情况还是要具体分析了!


里氏替换原则


里氏替换原则,LSP( The Liskov Substitution Principle)规定,一个子类型一定可以替换父类型。也就是说,我们假设S是T的一个子类,那么如果我们将一个程序中的所有T变量都用S来代替,那么程序依然可以运行正确。
例如,如果我们把企鹅当做鸟的子类,而鸟是有一个方法叫fly()的,但是企鹅是不会飞的,这就违反了里氏替换原则。那么,我们怎么来改变使它满足LSP呢?
问题由来:有一功能P1,由类A完成。现需要将功能P1进行扩展,扩展后的功能为P,其中P由原有功能P1与新功能P2组成。新功能P由类A的子类B来完成,则子类B在完成新功能P2的同时,有可能会导致原有功能P1发生故障。
解决方案:当使用继承时,遵循里氏替换原则。类B继承类A时,除添加新的方法完成新增功能P2外,尽量不要重写父类A的方法,也尽量不要重载父类A的方法
继承包含这样一层含义:父类中凡是已经实现好的方法(相对于抽象方法而言),实际上是在设定一系列的规范和契约,虽然它不强制要求所有的子类必须遵从这些契约,但是如果子类对这些非抽象方法任意修改,就会对整个继承体系造成破坏。而里氏替换原则就是表达了这一层含义。
继承作为面向对象三大特性之一,在给程序设计带来巨大便利的同时,也带来了弊端。比如使用继承会给程序带来侵入性,程序的可移植性降低,增加了对象间的耦合性,如果一个类被其他的类所继承,则当这个类需要修改时,必须考虑到所有的子类,并且父类修改后,所有涉及到子类的功能都有可能会产生故障。
里氏替换原则通俗的来讲就是:子类可以扩展父类的功能,但不能改变父类原有的功能。它包含以下4层含义:
  • 子类可以实现父类的抽象方法,但不能覆盖父类的非抽象方法。
  • 子类中可以增加自己特有的方法。
  • 当子类的方法重载父类的方法时,方法的前置条件(即方法的形参)要比父类方法的输入参数更宽松。
  • 当子类的方法实现父类的抽象方法时,方法的后置条件(即方法的返回值)要比父类更严格。
看上去很不可思议,因为我们会发现在自己编程中常常会违反里氏替换原则,程序照样跑的好好的。所以大家都会产生这样的疑问,假如我非要不遵循里氏替换原则会有什么后果?后果就是:你写的代码出问题的几率将会大大增加。


依赖倒置原则


依赖倒置原则,DIP( The Dependency Inversion Principle)规定,1)高层的模块不能依赖低层的模块,两者都应该依赖于抽象层;2)抽象层也不应该依赖于细节,细节应该依赖于抽象。
问题由来:类A直接依赖类B,假如要将类A改为依赖类C,则必须通过修改类A的代码来达成。这种场景下,类A一般是高层模块,负责复杂的业务逻辑;类B和类C是低层模块,负责基本的原子操作;假如修改类A,会给程序带来不必要的风险。
解决方案将类A修改为依赖接口I,类B和类C各自实现接口I,类A通过接口I间接与类B或者类C发生联系,则会大大降低修改类A的几率。
依赖倒置原则基于这样一个事实:相对于细节的多变性,抽象的东西要稳定的多。以抽象为基础搭建起来的架构比以细节为基础搭建起来的架构要稳定的多。在java中,抽象指的是接口或者抽象类,细节就是具体的实现类,使用接口或者抽象类的目的是制定好规范和契约,而不去涉及任何具体的操作,把展现细节的任务交给他们的实现类去完成。
例如:

应改为:
”依赖于抽象“中的抽象往往指接口之类的抽象层。例如:

这里Button类依赖于Lamp类,也就是当我们按下一个按钮后,灯就会开启或关闭。但是,如果有一天我们不想关灯了,我们想通过按一个按钮来控制开闭电视怎么办呢?如果是上图那样,我们需要修改Button类让其依赖于一个新类TV。那以后要开闭空调、开闭微波炉、开闭电脑呢?一直修改Button类显然不是一个好方法。因此,我们考虑增加一个接口,让Button类依赖于这个接口,而让Lamp、TV、Computer等类来实现这个接口就万无一失了!无论我们要增加多少开闭的物体,我们只要选择不同的接口实现就可以,而不需要反复修改Button类!


在实际编程中,我们一般需要做到如下3点:

  • 低层模块尽量都要有抽象类或接口,或者两者都有。
  • 变量的声明类型尽量是抽象类或接口。
  • 使用继承时遵循里氏替换原则。

依赖倒置原则的核心就是要我们面向接口编程,理解了面向接口编程,也就理解了依赖倒置。



接口隔离原则


接口隔离原则,ISP(The Interface Segregation Principle)规定,客户端不应该依赖它不需要的接口,一个类对另一个类的依赖应该建立在最小的接口上。 
问题由来:类A通过接口I依赖类B,类C通过接口I依赖类D,如果接口I对于类A和类B来说不是最小接口,则类B和类D必须去实现他们不需要的方法。
例如,下图中,类A依赖接口I中的方法1、方法2、方法3,类B是对类A依赖的实现。类C依赖接口I中的方法1、方法4、方法5,类D是对类C依赖的实现。对于类B和类D来说,虽然他们都存在着用不到的方法(也就是图中红色字体标记的方法),但由于实现了接口I,所以也必须要实现这些用不到的方法。

解决方案:将臃肿的接口I拆分为独立的几个接口,类A和类C分别与他们需要的接口建立依赖关系。也就是采用接口隔离原则。

接口隔离原则的含义是:建立单一接口,不要建立庞大臃肿的接口,尽量细化接口,接口中的方法尽量少。也就是说,我们要为各个类建立专用的接口,而不要试图去建立一个很庞大的接口供所有依赖它的类去调用。本文例子中,将一个庞大的接口变更为3个专用的接口所采用的就是接口隔离原则。在程序设计中,依赖几个专用的接口要比依赖一个综合的接口更灵活。接口是设计时对外部设定的“契约”,通过分散定义多个接口,可以预防外来变更的扩散,提高系统的灵活性和可维护性。

说到这里,很多人会觉的接口隔离原则跟之前的单一职责原则很相似,其实不然。其一,单一职责原则原注重的是职责;而接口隔离原则注重对接口依赖的隔离。其二,单一职责原则主要是约束类,其次才是接口和方法,它针对的是程序中的实现和细节;而接口隔离原则主要约束接口接口,主要针对抽象,针对程序整体框架的构建。

采用接口隔离原则对接口进行约束时,要注意以下几点:

  • 接口尽量小,但是要有限度。对接口进行细化可以提高程序设计灵活性是不挣的事实,但是如果过小,则会造成接口数量过多,使设计复杂化。所以一定要适度。
  • 为依赖接口的类定制服务,只暴露给调用的类它需要的方法,它不需要的方法则隐藏起来。只有专注地为一个模块提供定制服务,才能建立最小的依赖关系。
  • 提高内聚,减少对外交互。使接口用最少的方法去完成最多的事情。


迪米特法则


迪米特法则,又叫最少知道法则(Least Knowledge Principle,LKP),规定,一个对象对其他对象的了解越少越好。
问题由来:类与类之间的关系越密切,耦合度越大,当一个类发生改变时,对另一个类的影响也越大。
解决方案:尽量降低类与类之间的耦合。
软件编程的总的原则是:低耦合,高内聚。无论是面向过程编程还是面向对象编程,只有使各个模块之间的耦合尽量的低,才能提高代码的复用率。低耦合的优点不言而喻,但是怎么样编程才能做到低耦合呢?那正是迪米特法则要去完成的。
迪米特法则通俗的来讲,就是一个类对自己依赖的类知道的越少越好。也就是说,对于被依赖的类来说,无论逻辑多么复杂,都尽量地的将逻辑封装在类的内部,对外除了提供的public方法,不对外泄漏任何信息。迪米特法则还有一个更简单的定义:只与直接的朋友通信。首先来解释一下什么是直接的朋友:每个对象都会与其他对象有耦合关系,只要两个对象之间有耦合关系,我们就说这两个对象之间是朋友关系。耦合的方式很多,依赖、关联、组合、聚合等。其中,我们称出现成员变量、方法参数、方法返回值中的类为直接的朋友,而出现在局部变量中的类则不是直接的朋友。也就是说,陌生的类最好不要作为局部变量的形式出现在类的内部。

举一个例子:有一个集团公司,下属单位有分公司和直属部门,现在要求打印出所有下属单位的员工ID。先来看一下违反迪米特法则的设计。

//总公司员工
class Employee{
	private String id;
	public void setId(String id){
		this.id = id;
	}
	public String getId(){
		return id;
	}
}

//分公司员工
class SubEmployee{
	private String id;
	public void setId(String id){
		this.id = id;
	}
	public String getId(){
		return id;
	}
}

class SubCompanyManager{
	public List<SubEmployee> getAllEmployee(){
		List<SubEmployee> list = new ArrayList<SubEmployee>();
		for(int i=0; i<100; i++){
			SubEmployee emp = new SubEmployee();
			//为分公司人员按顺序分配一个ID
			emp.setId("分公司"+i);
			list.add(emp);
		}
		return list;
	}
}

class CompanyManager{

	public List<Employee> getAllEmployee(){
		List<Employee> list = new ArrayList<Employee>();
		for(int i=0; i<30; i++){
			Employee emp = new Employee();
			//为总公司人员按顺序分配一个ID
			emp.setId("总公司"+i);
			list.add(emp);
		}
		return list;
	}
	
	public void printAllEmployee(SubCompanyManager sub){
		List<SubEmployee> list1 = sub.getAllEmployee();
		for(SubEmployee e:list1){
			System.out.println(e.getId());
		}

		List<Employee> list2 = this.getAllEmployee();
		for(Employee e:list2){
			System.out.println(e.getId());
		}
	}
}

public class Client{
	public static void main(String[] args){
		CompanyManager e = new CompanyManager();
		e.printAllEmployee(new SubCompanyManager());
	}
} 

现在这个设计的主要问题出在CompanyManager中,根据迪米特法则,只与直接的朋友发生通信,而SubEmployee类并不是CompanyManager类的直接朋友(以局部变量出现的耦合不属于直接朋友),从逻辑上讲总公司只与他的分公司耦合就行了,与分公司的员工并没有任何联系,这样设计显然是增加了不必要的耦合。按照迪米特法则,应该避免类中出现这样非直接朋友关系的耦合。修改后的代码如下:

class SubCompanyManager{
	public List<SubEmployee> getAllEmployee(){
		List<SubEmployee> list = new ArrayList<SubEmployee>();
		for(int i=0; i<100; i++){
			SubEmployee emp = new SubEmployee();
			//为分公司人员按顺序分配一个ID
			emp.setId("分公司"+i);
			list.add(emp);
		}
		return list;
	}
	public void printEmployee(){
		List<SubEmployee> list = this.getAllEmployee();
		for(SubEmployee e:list){
			System.out.println(e.getId());
		}
	}
}

class CompanyManager{
	public List<Employee> getAllEmployee(){
		List<Employee> list = new ArrayList<Employee>();
		for(int i=0; i<30; i++){
			Employee emp = new Employee();
			//为总公司人员按顺序分配一个ID
			emp.setId("总公司"+i);
			list.add(emp);
		}
		return list;
	}
	
	public void printAllEmployee(SubCompanyManager sub){
		sub.printEmployee();
		List<Employee> list2 = this.getAllEmployee();
		for(Employee e:list2){
			System.out.println(e.getId());
		}
	}
}

修改后,为分公司增加了打印人员ID的方法,总公司直接调用来打印,从而避免了与分公司的员工发生耦合。

迪米特法则的初衷是降低类之间的耦合,由于每个类都减少了不必要的依赖,因此的确可以降低耦合关系。但是凡事都有度,虽然可以避免与非直接的类通信,但是要通信,必然会通过一个“中介”来发生联系,例如本例中,总公司就是通过分公司这个“中介”来与分公司的员工发生联系的。过分的使用迪米特原则,会产生大量这样的中介和传递类,导致系统复杂度变大。所以在采用迪米特法则时要反复权衡,既做到结构清晰,又要高内聚低耦合。


开-闭原则


开-闭原则,OCP( The Open-Closed Principle)规定:1)模块既要开放(对扩展开放)也要闭合(对修改闭合)。
问题由来:在软件的生命周期内,因为变化、升级和维护等原因需要对软件原有代码进行修改时,可能会给旧代码中引入错误,也可能会使我们不得不对整个功能进行重构,并且需要原有代码经过重新测试。
解决方案:当软件需要变化时,尽量通过扩展软件实体的行为来实现变化,而不是通过修改已有的代码来实现变化。
开闭原则的意思大体上是:用抽象构建框架,用实现扩展细节。因为抽象灵活性好,适应性广,只要抽象的合理,可以基本保持软件架构的稳定。而软件中易变的细节,我们用从抽象派生的实现类来进行扩展,当软件需要发生变化时,我们只需要根据需求重新派生一个实现类来扩展就可以了。当然前提是我们的抽象要合理,要对需求的变更有前瞻性和预见性才行。
说到这里,再回想一下前面说的5项原则,恰恰是告诉我们用抽象构建框架,用实现扩展细节的注意事项而已:单一职责原则告诉我们实现类要职责单一;里氏替换原则告诉我们不要破坏继承体系;依赖倒置原则告诉我们要面向接口编程;接口隔离原则告诉我们在设计接口的时候要精简单一;迪米特法则告诉我们要降低耦合。而开闭原则是总纲,他告诉我们要对扩展开放,对修改关闭。


参考资料:设计模式六大原则 http://www.uml.org.cn/sjms/201211023.asp#1





















posted on 2012-11-04 16:57  王大王  阅读(170)  评论(0编辑  收藏  举报

导航