PostgreSQL 传统 hash 分区方法和性能
背景
除了传统的基于trigger和rule的分区,PostgreSQL 10开始已经内置了分区功能(目前仅支持list和range),使用pg_pathman则支持hash分区。
从性能角度,目前最好的还是pg_pathman分区。
但是,传统的分区手段,依旧是最灵活的,在其他方法都不奏效时,可以考虑传统方法。
如何创建传统的hash分区
1、创建父表
create table tbl (id int, info text, crt_time timestamp);
2、创建分区表,增加约束
do language plpgsql $$
declare
parts int := 4;
begin
for i in 0..parts-1 loop
execute format('create table tbl%s (like tbl including all) inherits (tbl)', i);
execute format('alter table tbl%s add constraint ck check(mod(id,%s)=%s)', i, parts, i);
end loop;
end;
$$;
3、创建触发器函数,内容为数据路由,路由后返回NULL(即不写本地父表)
create or replace function ins_tbl() returns trigger as $$
declare
begin
case abs(mod(NEW.id,4))
when 0 then
insert into tbl0 values (NEW.*);
when 1 then
insert into tbl1 values (NEW.*);
when 2 then
insert into tbl2 values (NEW.*);
when 3 then
insert into tbl3 values (NEW.*);
else
return NEW; -- 如果是NULL则写本地父表
end case;
return null;
end;
$$ language plpgsql strict;
4、创建before触发器
create trigger tg1 before insert on tbl for each row when (NEW.id is not null) execute procedure ins_tbl();
5、验证
postgres=# insert into tbl values (1);
INSERT 0 0
postgres=# insert into tbl values (null);
INSERT 0 1
postgres=# insert into tbl values (0);
INSERT 0 0
postgres=# insert into tbl values (1);
INSERT 0 0
postgres=# insert into tbl values (2);
INSERT 0 0
postgres=# insert into tbl values (3);
INSERT 0 0
postgres=# insert into tbl values (4);
INSERT 0 0
postgres=# select tableoid::regclass, * from tbl;
tableoid | id | info | crt_time
----------+----+------+----------
tbl | | |
tbl0 | 0 | |
tbl0 | 4 | |
tbl1 | 1 | |
tbl1 | 1 | |
tbl2 | 2 | |
tbl3 | 3 | |
(7 rows)
6、查询时,只要提供了约束条件,会自动过滤到子表,不会扫描不符合约束条件的其他子表。
postgres=# explain select * from tbl where abs(mod(id,4)) = abs(mod(1,4)) and id=1;
QUERY PLAN
--------------------------------------------------------------------------
Append (cost=0.00..979127.84 rows=3 width=45)
-> Seq Scan on tbl (cost=0.00..840377.67 rows=2 width=45)
Filter: ((id = 1) AND (abs(mod(id, 4)) = 1))
-> Seq Scan on tbl1 (cost=0.00..138750.17 rows=1 width=45)
Filter: ((id = 1) AND (abs(mod(id, 4)) = 1))
(5 rows)
这里应该是错误的,因为如果想利用constraint_exclusion来优化sql,where条件应该尽可能简单,尽量和check约束保持一致,不要转换类型,更谈不上使用函数表达式了,上面实测执行计划是走的全表扫描。后面会列出官方文档中提到的有关分区表和constraint_exclusion参数相关的注意事项。
这里我明白德哥的原意了,因为做的hash分区,取模的数值只有4个且均大于等于0,这里加上绝对值是恰当的,但这个abs应该加到check约束里面,不然constraint_exclusion的优化效果还是用不到的。
下面是实测执行计划及修改条件后的执行计划:
db版本:PostgreSQL 10.1,constraint_exclusion:partition
swrd=# explain select * from tbl where abs(mod(id,4)) = abs(mod(1,4)) and id=1;
QUERY PLAN
------------------------------------------------------------
Append (cost=0.00..133.66 rows=5 width=44)
-> Seq Scan on tbl (cost=0.00..3.26 rows=1 width=44)
Filter: ((id = 1) AND (abs(mod(id, 4)) = 1))
-> Seq Scan on tbl0 (cost=0.00..32.60 rows=1 width=44)
Filter: ((id = 1) AND (abs(mod(id, 4)) = 1))
-> Seq Scan on tbl1 (cost=0.00..32.60 rows=1 width=44)
Filter: ((id = 1) AND (abs(mod(id, 4)) = 1))
-> Seq Scan on tbl2 (cost=0.00..32.60 rows=1 width=44)
Filter: ((id = 1) AND (abs(mod(id, 4)) = 1))
-> Seq Scan on tbl3 (cost=0.00..32.60 rows=1 width=44)
Filter: ((id = 1) AND (abs(mod(id, 4)) = 1))
(11 rows)
修改where条件后的执行计划:
swrd=# explain select * from tbl where mod(id,4) = mod(1,4) and id=1;
QUERY PLAN
------------------------------------------------------------
Append (cost=0.00..32.75 rows=2 width=44)
-> Seq Scan on tbl (cost=0.00..2.98 rows=1 width=44)
Filter: ((id = 1) AND (mod(id, 4) = 1))
-> Seq Scan on tbl1 (cost=0.00..29.78 rows=1 width=44)
Filter: ((id = 1) AND (mod(id, 4) = 1))
(5 rows)
传统分区性能 对比 非分区表
传统分区表性能
性能相比没有分区有一定下降。(CPU开销略有提升)
1、创建压测脚本
vi test.sql
\set id random(1,100000)
insert into tbl values (:id);
2、压测
pgbench -M prepared -n -r -P 1 -f ./test.sql -c 56 -j 56 -T 120
transaction type: ./test.sql
scaling factor: 1
query mode: prepared
number of clients: 56
number of threads: 56
duration: 120 s
number of transactions actually processed: 21277635
latency average = 0.316 ms
latency stddev = 0.170 ms
tps = 177290.033472 (including connections establishing)
tps = 177306.915203 (excluding connections establishing)
script statistics:
- statement latencies in milliseconds:
0.002 \set id random(1,100000)
0.315 insert into tbl values (:id);
3、资源开销
last pid: 36817; load avg: 32.9, 15.7, 7.27; up 15+00:46:36 17:59:17
63 processes: 34 running, 29 sleeping
CPU states: 42.3% user, 0.0% nice, 20.4% system, 37.1% idle, 0.2% iowait
Memory: 192G used, 29G free, 116M buffers, 186G cached
DB activity: 168654 tps, 0 rollbs/s, 928 buffer r/s, 99 hit%, 176 row r/s, 168649 row w/
DB I/O: 0 reads/s, 0 KB/s, 0 writes/s, 0 KB/s
DB disk: 1455.4 GB total, 425.2 GB free (70% used)
Swap:
未分区表性能
postgres=# drop trigger tg1 on tbl ;
1、TPS
transaction type: ./test.sql
scaling factor: 1
query mode: prepared
number of clients: 56
number of threads: 56
duration: 120 s
number of transactions actually processed: 31188395
latency average = 0.215 ms
latency stddev = 0.261 ms
tps = 259884.798007 (including connections establishing)
tps = 259896.495810 (excluding connections establishing)
script statistics:
- statement latencies in milliseconds:
0.002 \set id random(1,100000)
0.214 insert into tbl values (:id);
2、资源开销
last pid: 36964; load avg: 31.7, 18.7, 8.89; up 15+00:47:41 18:00:22
63 processes: 45 running, 18 sleeping
CPU states: 33.3% user, 0.0% nice, 26.8% system, 39.8% idle, 0.1% iowait
Memory: 194G used, 26G free, 118M buffers, 188G cached
DB activity: 256543 tps, 0 rollbs/s, 1006 buffer r/s, 99 hit%, 176 row r/s, 256538 row w
DB I/O: 0 reads/s, 0 KB/s, 0 writes/s, 0 KB/s
DB disk: 1455.4 GB total, 424.8 GB free (70% used)
Swap:
非整型字段,如何实现哈希分区
1、PostgreSQL内部提供了类型转换的哈希函数,可以将任意类型转换为整型。
List of functions
Schema | Name | Result data type | Argument data types | Type
------------+----------------+------------------+-----------------------------+--------
pg_catalog | hash_aclitem | integer | aclitem | normal
pg_catalog | hash_array | integer | anyarray | normal
pg_catalog | hash_numeric | integer | numeric | normal
pg_catalog | hash_range | integer | anyrange | normal
pg_catalog | hashbpchar | integer | character | normal
pg_catalog | hashchar | integer | "char" | normal
pg_catalog | hashenum | integer | anyenum | normal
pg_catalog | hashfloat4 | integer | real | normal
pg_catalog | hashfloat8 | integer | double precision | normal
pg_catalog | hashinet | integer | inet | normal
pg_catalog | hashint2 | integer | smallint | normal
pg_catalog | hashint4 | integer | integer | normal
pg_catalog | hashint8 | integer | bigint | normal
pg_catalog | hashmacaddr | integer | macaddr | normal
pg_catalog | hashmacaddr8 | integer | macaddr8 | normal
pg_catalog | hashname | integer | name | normal
pg_catalog | hashoid | integer | oid | normal
pg_catalog | hashoidvector | integer | oidvector | normal
pg_catalog | hashtext | integer | text | normal
pg_catalog | hashvarlena | integer | internal | normal
pg_catalog | interval_hash | integer | interval | normal
pg_catalog | jsonb_hash | integer | jsonb | normal
pg_catalog | pg_lsn_hash | integer | pg_lsn | normal
pg_catalog | time_hash | integer | time without time zone | normal
pg_catalog | timestamp_hash | integer | timestamp without time zone | normal
pg_catalog | timetz_hash | integer | time with time zone | normal
pg_catalog | uuid_hash | integer | uuid | normal
2、其他字段类型的哈希表方法如下
如 hashtext
drop table tbl;
create table tbl (id text, info text, crt_time timestamp);
do language plpgsql $$
declare
parts int := 4;
begin
for i in 0..parts-1 loop
execute format('create table tbl%s (like tbl including all) inherits (tbl)', i);
execute format('alter table tbl%s add constraint ck check(abs(mod(hashtext(id),%s))=%s)', i, parts, i);
end loop;
end;
$$;
create or replace function ins_tbl() returns trigger as $$
declare
begin
case abs(mod(hashtext(NEW.id),4))
when 0 then
insert into tbl0 values (NEW.*);
when 1 then
insert into tbl1 values (NEW.*);
when 2 then
insert into tbl2 values (NEW.*);
when 3 then
insert into tbl3 values (NEW.*);
else
return NEW;
end case;
return null;
end;
$$ language plpgsql strict;
create trigger tg1 before insert on tbl for each row when (NEW.id is not null) execute procedure ins_tbl();
性能与整型一样。
传统分区性能 对比 非分区表 - 性能结果
1、性能
模式 | insert N 行/s |
---|---|
基于trigger的hash分区 | 17.7 万 |
未分区 | 26 万 |
2、CPU资源开销
模式 | user | system | idle |
---|---|---|---|
基于trigger的hash分区 | 42.3% | 20.4% | 37.1% |
未分区 | 33.3% | 26.8% | 39.8% |
小结
除了传统的基于trigger和rule的分区,PostgreSQL 10开始已经内置了分区功能(目前仅支持list和range),使用pg_pathman则支持hash分区。
从性能角度,目前最好的还是pg_pathman分区。
《PostgreSQL 10 内置分区 vs pg_pathman perf profiling》
《PostgreSQL 10.0 preview 功能增强 - 内置分区表》
《PostgreSQL 9.5+ 高效分区表实现 - pg_pathman》
但是,传统的分区手段,依旧是最灵活的,在其他方法都不奏效时,可以考虑传统方法。
传统手段中,最懒散的做法(当然是以牺牲性能为前提),例子:
《PostgreSQL general public partition table trigger》
下面则是pg10官方文档中提到的有关分区表和有关参数constraint_exclusion的相关注意事项:
The following caveats apply to constraint exclusion, which is used by both inheritance and partitioned tables:
-
Constraint exclusion only works when the query's WHERE clause contains constants (or externally supplied parameters). For example, a comparison against a non-immutable function such as CURRENT_TIMESTAMP cannot be optimized, since the planner cannot know which partition the function value might fall into at run time.
-
Keep the partitioning constraints simple, else the planner may not be able to prove that partitions don't need to be visited. Use simple equality conditions for list partitioning, or simple range tests for range partitioning, as illustrated in the preceding examples. A good rule of thumb is that partitioning constraints should contain only comparisons of the partitioning column(s) to constants using B-tree-indexable operators, which applies even to partitioned tables, because only B-tree-indexable column(s) are allowed in the partition key. (This is not a problem when using declarative partitioning, since the automatically generated constraints are simple enough to be understood by the planner.)
-
All constraints on all partitions of the master table are examined during constraint exclusion, so large numbers of partitions are likely to increase query planning time considerably. Partitioning using these techniques will work well with up to perhaps a hundred partitions; don't try to use many thousands of partitions.
简单翻译:
- 约束排除只有在查询语句的where部分含有常量时,才有效。比如在做比较时,不可以用non-immutable function,类似CURRENT_TIMESTAMP就不能被优化,因为优化器不能确定这个函数在执行时会落到那个分区。
- 尽量保持分区约束的简单性,不然优化器可能无法确定要访问哪个分区。
- 所有分区表中的约束在优化器进行约束检查时,都会查到,所以只要分区表数量不是成千上万就不会影响太大。
摘自:
https://github.com/digoal/blog/blob/master/201711/20171122_02.md
https://www.postgresql.org/docs/10/static/ddl-partitioning.html#DDL-PARTITIONING-CONSTRAINT-EXCLUSION
posted on 2017-12-19 16:23 Still water run deep 阅读(3374) 评论(0) 编辑 收藏 举报