Java8
函数式接口
Predicate<T> T->boolean IntPredicate LongPredicate DoublePredicate
Consumer<T> T->void
IntConsumer LongConsumer DoubleConsumer
Function<T,R> T->R
IntFunction<R>
IntToDoubleFunction
IntToLongFunction
LongFunction<R>
LongToDoubleFunction
LongToIntFunction
DoubleFunction<T>
ToIntFunction<R>
ToLongFunction<T>
ToDoubleFunction<T>
Supplier<T> ()->T
BooleanSupplier
IntSupplier
LongSupplier
DoubleSupplier
UnarryOperator<T> T->T
IntUnaryOperator
LongUnaryOperator
DoubleUnaryOperator
BinaryOperator<T> (T,T)->T
IntBinaryOperator
LongBinaryOperator
DoubleBinaryOperator
BiPredicate<L,R> (L,R)->boolean
BiConsumer<T,U> (L,R)->void
ObjIntConsumer<T>
ObjLongConsumer<T>
ObjDoubleConsumer<T>
BiFunction<T,U,R> (T,U)->R
ToIntBiFunction<T,U>
ToLongBiFunction<T,U>
ToDoubleFunction<T,U>
复合lambda表达式
List<Apple> list = Arrays.asList(new Apple(2), new Apple(3), new Apple(1), new Apple(4), new Apple(5)); list.sort(Comparator.comparing(Apple::getWeight));
//排序,调用Apple getWeight方法进行排序
比较器复合
List<Apple> list = Arrays.asList(new Apple(2,"China"), new Apple(2,"Azk"), new Apple(1,"Korea"), new Apple(4,"Japan"), new Apple(5,"China")); list.sort(Comparator.comparing(Apple::getWeight).reversed().thenComparing(Apple::getCountry));
//排序,先用重量排序,然后在反转,然后在根据国家排序
谓词复合
public static void main(String[] args) { List<Apple> list = Arrays.asList(new Apple(2, "China"), new Apple(2, "Azk"), new Apple(1, "Korea"), new Apple(4, "Japan"), new Apple(5, "China")); list.sort(Comparator.comparing(Apple::getWeight).reversed().thenComparing(Apple::getCountry)); Predicate<Apple> applePredicate1=(Apple apple)->apple.getWeight()>2; Predicate<Apple> applePredicate2= ((Predicate<Apple>) apple -> apple.getWeight() > 2).and(apple -> apple.getCountry().equals("China")); //筛选 苹果的重量大于2,同时属于China
testFuHe(list,applePredicate2);
} public static List<Apple> testFuHe(List<Apple> apples, Predicate<Apple> predicate) { ArrayList<Apple> as = new ArrayList<>(); for (Apple apple : apples) { if (predicate.test(apple)) { as.add(apple); } } return as; }
函数复合
Function<Integer,Integer> fun1=(num)->num*10; Function<Integer,Integer> fun2=(num)->num+10; Function<Integer, Integer> fun3 = fun1.andThen(fun2); //调完fun1 在调用fun2 Function<Integer, Integer> fun4 = fun1.compose(fun2); //调用fun2的结果 然后在调用fun1 Integer res3 = fun3.apply(5); Integer res4 = fun4.apply(5);
流处理
流只能遍历一次。遍历完之后这个流就已经被消费掉了
流的Api
filter 中间 Stream<T> Predicate<T> T->boolean
map 中间 Stream<R> Function<T,R> T->R
limit 中间 Stream<T>
sorted 中间 Stream<T> Compartor<T> (T,T)->int
distinct 中间 Stream<T>
flatMap 中间 Stream<T> Function<T,Stream<R>> T->Stream<R>
forEach 终端 Comsumer<T> T->void 消费每个流的元素,返回一个void
count 终端 返回流中元素的个数。
collect 终端 把流归成一个集合,比如List,Map甚至Integer
reduce 终端 Optional<T> BinaryOperator<T> (T,T)->T
匹配
anyMatch 终端 Predicate<T> T->boolean 看当中是否有一个匹配
allMatch 终端 Predicate<T> T->boolean 看当中是否全部匹配
noMatch 终端 Predicate<T> T->boolean 确保没有匹配
查找
findAny 终端 Optional<T> 返回当前流的任意元素
findFirst 终端 Optional<T> 查找第一个
数值
sum
min
max
案例
public class Trader { private String name; private String city; public Trader(String name, String city) { this.name = name; this.city = city; } public String getName() { return name; } public void setName(String name) { this.name = name; } public String getCity() { return city; } public void setCity(String city) { this.city = city; } @Override public String toString() { return "Trader{" + "name='" + name + '\'' + ", city='" + city + '\'' + '}'; } }
public class Transaction { private Trader trader; private int year; private int value; public Transaction(Trader trader, int year, int value) { this.trader = trader; this.year = year; this.value = value; } public Trader getTrader() { return trader; } public void setTrader(Trader trader) { this.trader = trader; } public int getYear() { return year; } public void setYear(int year) { this.year = year; } public int getValue() { return value; } public void setValue(int value) { this.value = value; } }
public static void main(String[] args) { Trader raoul = new Trader("Raoul", "Cambridge"); Trader mario = new Trader("Mario", "Milan"); Trader alan = new Trader("Alan", "Cambridge"); Trader brian = new Trader("Brian", "Cambridge"); List<Transaction> transactions = Arrays.asList( new Transaction(brian, 2011, 300), new Transaction(raoul, 2012, 1000), new Transaction(raoul, 2011, 400), new Transaction(mario, 2012, 710), new Transaction(mario, 2012, 700), new Transaction(alan, 2012, 950) ); //找出2011年发生的所有交易,并按交易额排序(从低到高)。 List<Transaction> res1 = transactions.stream().filter(transaction -> transaction.getYear() == 2011) .sorted(Comparator.comparing(Transaction::getValue)).collect(Collectors.toList()); //交易员都在哪些不同的城市工作过? List<String> res2 = transactions.stream().map(transaction -> transaction.getTrader().getCity()).distinct().collect(Collectors.toList()); //查找所有来自于剑桥的交易员,并按姓名排序。 List<Transaction> res3 = transactions.stream().filter(transaction -> transaction.getTrader() .getCity().equals("Cambridge")).sorted(Comparator.comparing(o -> o.getTrader().getName())).collect(Collectors.toList()); //返回所有交易员的姓名字符串,按字母顺序排序。 List<String> res4 = transactions.stream().flatMap((Function<Transaction, Stream<String>>) transaction -> Stream.of(transaction.getTrader().getName())) .sorted().collect(Collectors.toList()); //有没有交易员是在米兰工作的? Optional<Transaction> res5 = transactions.stream().filter(transaction -> transaction.getTrader().getCity().equals("Milan")).findAny(); //打印生活在剑桥的交易员的所有交易额。 transactions.stream().filter(transaction -> transaction.getTrader().getCity().equals("Cambridge")) .flatMap((Function<Transaction, Stream<?>>) transaction -> Stream.of(transaction.getValue())).forEach(System.out::println); //所有交易中,最高的交易额是多少? Optional<Transaction> res6 = transactions.stream().max(Comparator.comparingInt(Transaction::getValue)); //找到交易额最小的交易。 Optional<Transaction> res7 = transactions.stream().min(Comparator.comparingInt(Transaction::getValue)); }
构建流
由值创建流
Stream.of();
Stream<String> stringStream = Stream.of("one", "two", "three");
由数组创建流
Arrays.stream();
int[] nums={2,3,4,5,6};
IntStream stream = Arrays.stream(nums);
文件生成流
Stream<String> lines = Files.lines(Paths.get("xxx.txt"), Charset.defaultCharset());
无限生成流
Stream.iterate(1, integer -> integer+1).limit(10).forEach(System.out::println); //每个新值都是依照上一次的值按规则生成的
Stream.generate(Math::random).limit(10).forEach(System.out::println);
收集器
预定义收集器
transactions.stream().map(transaction -> transaction.getValue()).collect(Collectors.counting()); // Collectors.counting()统计个数
transactions.stream().collect(Collectors.maxBy(Comparator.comparingInt(Transaction::getValue))); // Collectors.maxBy() 取最大值
transactions.stream().collect(Collectors.summingInt(Transaction::getValue)); //求和
transactions.stream().collect(Collectors.averagingInt(Transaction::getValue)); //求平均
transactions.stream().map(transaction -> transaction.getTrader().getName()).collect(Collectors.joining(",")); //字符串拼接
分组
transactions.stream().collect(Collectors.groupingBy(new Function<Transaction, Integer>() { @Override public Integer apply(Transaction transaction) { return transaction.getYear(); } }));
transactions.stream().collect(Collectors.groupingBy(Transaction::getYear)); //按年限分组
//多级分组
Map<Integer, Map<String, List<Transaction>>> re2 = transactions.stream().collect(Collectors.groupingBy(Transaction::getYear, Collectors.groupingBy((Transaction transaction) -> transaction.getTrader().getCity())));
Map<Integer, Map<String, List<Transaction>>> re3 = transactions.stream().collect(Collectors.groupingBy(Transaction::getYear, Collectors.groupingBy(new Function<Transaction, String>() {
@Override
public String apply(Transaction o) {
return o.getTrader().getCity();
}
})));
//注意
groupingBy收集器传递给外层收集器来实现堆积分组。进一步说传递给第一个groupingBy的第二个收集器可以是任何类型,而不一定是另一个groupingBy
Map<Integer, Long> count = transactions.stream().collect(Collectors.groupingBy(Transaction::getYear, Collectors.counting()));
将收集好的结果转换为另一种类型
Map<Integer, Transaction> re4 = transactions.stream().collect(Collectors.groupingBy(Transaction::getYear, Collectors.collectingAndThen(Collectors.maxBy(Comparator.comparing(Transaction::getValue)), Optional::get)));