『开发技巧』Keras自定义对象(层、评价函数与损失)

1.自定义层

对于简单、无状态的自定义操作,你也许可以通过 layers.core.Lambda 层来实现。但是对于那些包含了可训练权重的自定义层,你应该自己实现这种层。

这是一个 Keras2.0 中,Keras 层的骨架(如果你用的是旧的版本,请更新到新版)。你只需要实现三个方法即可:

  • build(input_shape): 这是你定义权重的地方。这个方法必须设 self.built = True,可以通过调用 super([Layer], self).build() 完成。
  • call(x): 这里是编写层的功能逻辑的地方。你只需要关注传入 call 的第一个参数:输入张量,除非你希望你的层支持masking。
  • compute_output_shape(input_shape): 如果你的层更改了输入张量的形状,你应该在这里定义形状变化的逻辑,这让Keras能够自动推断各层的形状。
from keras import backend as K
from keras.engine.topology import Layer

class MyLayer(Layer):

    def __init__(self, output_dim, **kwargs):
        self.output_dim = output_dim
        super(MyLayer, self).__init__(**kwargs)

    def build(self, input_shape):
        # 为该层创建一个可训练的权重
        self.kernel = self.add_weight(name='kernel', 
                                      shape=(input_shape[1], self.output_dim),
                                      initializer='uniform',
                                      trainable=True)
        super(MyLayer, self).build(input_shape)  # 一定要在最后调用它

    def call(self, x):
        return K.dot(x, self.kernel)

    def compute_output_shape(self, input_shape):
        return (input_shape[0], self.output_dim)

还可以定义具有多个输入张量和多个输出张量的 Keras 层。 为此,你应该假设方法 build(input_shape)call(x) 和 compute_output_shape(input_shape) 的输入输出都是列表。 这里是一个例子,与上面那个相似:

from keras import backend as K
from keras.engine.topology import Layer

class MyLayer(Layer):

    def __init__(self, output_dim, **kwargs):
        self.output_dim = output_dim
        super(MyLayer, self).__init__(**kwargs)

    def build(self, input_shape):
        assert isinstance(input_shape, list)
        # 为该层创建一个可训练的权重
        self.kernel = self.add_weight(name='kernel',
                                      shape=(input_shape[0][1], self.output_dim),
                                      initializer='uniform',
                                      trainable=True)
        super(MyLayer, self).build(input_shape)  # 一定要在最后调用它

    def call(self, x):
        assert isinstance(x, list)
        a, b = x
        return [K.dot(a, self.kernel) + b, K.mean(b, axis=-1)]

    def compute_output_shape(self, input_shape):
        assert isinstance(input_shape, list)
        shape_a, shape_b = input_shape
        return [(shape_a[0], self.output_dim), shape_b[:-1]]

已有的 Keras 层就是实现任何层的很好例子。不要犹豫阅读源码!

2.自定义评价函数

自定义评价函数应该在编译的时候(compile)传递进去。该函数需要以 (y_true, y_pred) 作为输入参数,并返回一个张量作为输出结果。

import keras.backend as K

def mean_pred(y_true, y_pred):
    return K.mean(y_pred)

model.compile(optimizer='rmsprop',
              loss='binary_crossentropy',
              metrics=['accuracy', mean_pred])

3.自定义损失函数

自定义损失函数也应该在编译的时候(compile)传递进去。该函数需要以 (y_true, y_pred) 作为输入参数,并返回一个张量作为输出结果。

import keras.backend as K

def my_loss(y_true, y_pred):
    return K.mean(K.squre(y_pred-y_true))#以平方差举例

model.compile(optimizer='rmsprop',
              loss=my_loss,
              metrics=['accuracy'])

4.处理已保存模型中的自定义层(或其他自定义对象)

如果要加载的模型包含自定义层或其他自定义类或函数,则可以通过 custom_objects 参数将它们传递给加载机制:

from keras.models import load_model
# 假设你的模型包含一个 AttentionLayer 类的实例
model = load_model('my_model.h5', custom_objects={'AttentionLayer': AttentionLayer})

或者,你可以使用 自定义对象作用域

from keras.utils import CustomObjectScope

with CustomObjectScope({'AttentionLayer': AttentionLayer}):
    model = load_model('my_model.h5')

 

posted @ 2019-07-15 12:02  小宋是呢  阅读(918)  评论(0编辑  收藏  举报