leetcode-dp-hard-最小距离
package dp.minDistance;
/**
* 72. 编辑距离
* 给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。
*
* 你可以对一个单词进行如下三种操作:
*
* 插入一个字符
* 删除一个字符
* 替换一个字符
*
*
* 示例 1:
*
* 输入:word1 = "horse", word2 = "ros"
* 输出:3
* 解释:
* horse -> rorse (将 'h' 替换为 'r')
* rorse -> rose (删除 'r')
* rose -> ros (删除 'e')
* 示例 2:
*
* 输入:word1 = "intention", word2 = "execution"
* 输出:5
* 解释:
* intention -> inention (删除 't')
* inention -> enention (将 'i' 替换为 'e')
* enention -> exention (将 'n' 替换为 'x')
* exention -> exection (将 'n' 替换为 'c')
* exection -> execution (插入 'u')
*
*
* 提示:
*
* 0 <= word1.length, word2.length <= 500
* word1 和 word2 由小写英文字母组成
*/
public class minDistance {
public static int minDistance(String word1, String word2) {
int len1 = word1.length();
int len2 = word2.length();
char[] char1 = word1.toCharArray();
char[] char2 = word2.toCharArray();
int[][] dp = new int[len1 + 1][len2 + 2];
//初始化
for (int i = 0; i <=len1; i++) {
dp[i][0] = i;
}
for (int i = 0; i <=len2; i++) {
dp[0][i]=i;
}
//相同就跳过,否则就取三种操作中最小的
for (int i = 1; i <= len1; i++) {
for (int j = 1; j <= len2; j++) {
if (char1[i - 1] == char2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1];
} else {
dp[i][j] = Math.min(Math.min(dp[i - 1][j] + 1, dp[i][j - 1] + 1), dp[i - 1][j - 1] + 1);
}
}
}
return dp[len1][len2];
}
public static void main(String[] args) {
String word1 = "horse", word2 = "ros";
System.out.println(minDistance(word1, word2));
}
}
不恋尘世浮华,不写红尘纷扰