leetcode-dp-hard-最小距离


package dp.minDistance;


/**
 * 72. 编辑距离
 * 给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。
 *
 * 你可以对一个单词进行如下三种操作:
 *
 * 插入一个字符
 * 删除一个字符
 * 替换一个字符
 *
 *
 * 示例 1:
 *
 * 输入:word1 = "horse", word2 = "ros"
 * 输出:3
 * 解释:
 * horse -> rorse (将 'h' 替换为 'r')
 * rorse -> rose (删除 'r')
 * rose -> ros (删除 'e')
 * 示例 2:
 *
 * 输入:word1 = "intention", word2 = "execution"
 * 输出:5
 * 解释:
 * intention -> inention (删除 't')
 * inention -> enention (将 'i' 替换为 'e')
 * enention -> exention (将 'n' 替换为 'x')
 * exention -> exection (将 'n' 替换为 'c')
 * exection -> execution (插入 'u')
 *
 *
 * 提示:
 *
 * 0 <= word1.length, word2.length <= 500
 * word1 和 word2 由小写英文字母组成
 */
public class minDistance {
    public static int minDistance(String word1, String word2) {

        int len1 = word1.length();
        int len2 = word2.length();
        char[] char1 = word1.toCharArray();
        char[] char2 = word2.toCharArray();

        int[][] dp = new int[len1 + 1][len2 + 2];

        //初始化
        for (int i = 0; i <=len1; i++) {
            dp[i][0] = i;
        }
        for (int i = 0; i <=len2; i++) {
            dp[0][i]=i;
        }

        //相同就跳过,否则就取三种操作中最小的
        for (int i = 1; i <= len1; i++) {
            for (int j = 1; j <= len2; j++) {
                if (char1[i - 1] == char2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1];
                } else {
                    dp[i][j] = Math.min(Math.min(dp[i - 1][j] + 1, dp[i][j - 1] + 1), dp[i - 1][j - 1] + 1);
                }
            }
        }
        return dp[len1][len2];
    }

    public static void main(String[] args) {
        String word1 = "horse", word2 = "ros";
        System.out.println(minDistance(word1, word2));
    }
}

posted @ 2022-01-06 10:00  小傻孩丶儿  阅读(33)  评论(0编辑  收藏  举报