Lc347_前 K 个高频元素
import java.util.*;
/**
* 347. 前 K 个高频元素
* 给定一个非空的整数数组,返回其中出现频率前 k 高的元素。
* <p>
* <p>
* <p>
* 示例 1:
* <p>
* 输入: nums = [1,1,1,2,2,3], k = 2
* 输出: [1,2]
* 示例 2:
* <p>
* 输入: nums = [1], k = 1
* 输出: [1]
* <p>
* <p>
* 提示:
* <p>
* 你可以假设给定的 k 总是合理的,且 1 ≤ k ≤ 数组中不相同的元素的个数。
* 你的算法的时间复杂度必须优于 O(n log n) , n 是数组的大小。
* 题目数据保证答案唯一,换句话说,数组中前 k 个高频元素的集合是唯一的。
* 你可以按任意顺序返回答案。
*/
public class TopKFrequent {
/**
* 本题考点就是优先队列中大顶堆和小顶堆的使用
* 堆是一种完全二叉树结构,优先队列可以通过内部排序维持内部顺序
* 前topk 大小和队列大小顶堆反着用,这样省空间
* <p>
* 引用
* topk (前k大)用小根堆,维护堆大小不超过 k 即可。每次压入堆前和堆顶元素比较,如果比堆顶元素还小,直接扔掉,否则压入堆。检查堆大小是否超过 k,如果超过,弹出堆顶。复杂度是 nlogk
* 避免使用大根堆,因为你得把所有元素压入堆,复杂度是 nlogn,而且还浪费内存。如果是海量元素,那就挂了。
*
* @param nums
* @param k
* @return
*/
public static int[] topKFrequent(int[] nums, int k) {
/**
使用字典,统计每个元素出现的次数,元素为键,元素出现的次数为值\
*
*/
Map<Integer, Integer> map = new HashMap<>();
for (int i = 0; i < nums.length; i++) {
if (map.containsKey(nums[i])) {
map.put(nums[i], map.get(nums[i]) + 1);
} else {
map.put(nums[i], 1);
}
}
/**
*
遍历map,用最小堆保存频率最大的k个元素
*/
PriorityQueue<Integer> priorityQueue = new PriorityQueue<>(
new Comparator<Integer>() {
@Override
public int compare(Integer o1, Integer o2) {
return map.get(o1) - map.get(o2);
}
}
);
// 取出最小堆中的元素
for (Integer key : map.keySet()) {
if (priorityQueue.size() < k) {
priorityQueue.add(key);
} else if (map.get(key) > map.get(priorityQueue.peek())) {
priorityQueue.poll();
priorityQueue.add(key);
}
}
int[] resArray = new int[priorityQueue.size()];
for (int i = 0; !priorityQueue.isEmpty(); i++) {
resArray[i] = priorityQueue.poll();
}
return resArray;
}
public static void main(String[] args) {
int[] nums = {1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3};
int k = 3;
int[] res = topKFrequent(nums, k);
for (int i = 0; i < res.length; i++) {
System.out.println(res[i]);
}
}
}
不恋尘世浮华,不写红尘纷扰