ruijiege

  博客园 :: 首页 :: 博问 :: 闪存 :: 新随笔 :: 联系 :: 订阅 订阅 :: 管理 ::
import numpy as np
import struct
import random
import matplotlib.pyplot as plt
import pandas as pd
import math


def load_labels(file):
    with open(file, "rb") as f:
        data = f.read()

    magic_number, num_samples = struct.unpack(">ii", data[:8])
    if magic_number != 2049:  # 0x00000801
        print(f"magic number mismatch {magic_number} != 2049")
        return None

    labels = np.array(list(data[8:]))
    return labels


def load_images(file):
    with open(file, "rb") as f:
        data = f.read()

    magic_number, num_samples, image_width, image_height = struct.unpack(">iiii", data[:16])
    if magic_number != 2051:  # 0x00000803
        print(f"magic number mismatch {magic_number} != 2051")
        return None

    image_data = np.asarray(list(data[16:]), dtype=np.uint8).reshape(num_samples, -1)
    return image_data

def one_hot(labels, classes):
    n = len(labels)
    output = np.zeros((n, classes), dtype=np.int32)
    for row, label in enumerate(labels):
        output[row, label] = 1
    return output


val_labels = load_labels("E:/杜老师课程/dataset/t10k-labels-idx1-ubyte")  # 10000,
val_images = load_images("E:/杜老师课程/dataset/t10k-images-idx3-ubyte")  # 10000, 784
numdata = val_images.shape[0]  # 60000
val_images = np.hstack((val_images / 255 - 0.5, np.ones((numdata, 1))))  # 10000, 785
val_pd = pd.DataFrame(val_labels, columns=["label"])

train_labels = load_labels("E:/杜老师课程/dataset/train-labels-idx1-ubyte")  # 60000,
train_images = load_images("E:/杜老师课程/dataset/train-images-idx3-ubyte")  # 60000, 784
numdata = train_images.shape[0]  # 60000
train_images = np.hstack((train_images / 255 - 0.5, np.ones((numdata, 1))))  # 60000, 785
train_pd = pd.DataFrame(train_labels, columns=["label"])


def show_hist(labels, num_classes):
    label_map = {key: 0 for key in range(num_classes)}
    for label in labels:
        label_map[label] += 1

    labels_hist = [label_map[key] for key in range(num_classes)]
    pd.DataFrame(labels_hist, columns=["label"]).plot(kind="bar")


show_hist(train_labels, 10)


class Dataset:
    def __init__(self, images, labels):
        self.images = images
        self.labels = labels

    # 获取他的一个item,  dataset = Dataset(),   dataset[index]
    def __getitem__(self, index):
        return self.images[index], self.labels[index]

    # 获取数据集的长度,个数
    def __len__(self):
        return len(self.images)


class DataLoaderIterator:
    def __init__(self, dataloader):
        self.dataloader = dataloader
        self.cursor = 0
        self.indexs = list(range(self.dataloader.count_data))  # 0, ... 60000
        if self.dataloader.shuffle:
            # 打乱一下
            random.shuffle(self.indexs)

    # 合并batch的数据
    def merge_to(self, container, b):
        if len(container) == 0:
            for index, data in enumerate(b):
                if isinstance(data, np.ndarray):
                    container.append(data)
                else:
                    container.append(np.array([data], dtype=type(data)))
        else:
            for index, data in enumerate(b):
                container[index] = np.vstack((container[index], data))
        return container

    def __next__(self):
        if self.cursor >= self.dataloader.count_data:
            raise StopIteration()

        batch_data = []
        remain = min(self.dataloader.batch_size, self.dataloader.count_data - self.cursor)  # 256, 128
        for n in range(remain):
            index = self.indexs[self.cursor]
            data = self.dataloader.dataset[index]
            batch_data = self.merge_to(batch_data, data)
            self.cursor += 1
        return batch_data


class DataLoader:

    # shuffle 打乱
    def __init__(self, dataset, batch_size, shuffle):
        self.dataset = dataset
        self.shuffle = shuffle
        self.count_data = len(dataset)
        self.batch_size = batch_size

    def __iter__(self):
        return DataLoaderIterator(self)


def estimate(plabel, gt_labels, classes):
    plabel = plabel.copy()
    gt_labels = gt_labels.copy()
    match_mask = plabel == classes
    mismatch_mask = plabel != classes
    plabel[match_mask] = 1
    plabel[mismatch_mask] = 0

    gt_mask = gt_labels == classes
    gt_mismatch_mask = gt_labels != classes
    gt_labels[gt_mask] = 1
    gt_labels[gt_mismatch_mask] = 0

    TP = sum(plabel & gt_labels)
    FP = sum(plabel & (1 - gt_labels))
    FN = sum((1 - plabel) & gt_labels)
    TN = sum((1 - plabel) & (1 - gt_labels))

    precision = TP / (TP + FP)
    recall = TP / (TP + FN)
    accuracy = (TP + TN) / (TP + FP + FN + TN)
    F1 = 2 * (precision * recall) / (precision + recall)
    return precision, recall, accuracy, F1


def estimate_val(images, gt_labels, theta, classes):
    predict = sigmoid(val_images @ theta)
    plabel = predict.argmax(1)
    prob = plabel == val_labels
    total_images = images.shape[0]
    accuracy = sum(prob) / total_images
    return accuracy, cross_entropy(predict, one_hot(gt_labels, classes))


def cross_entropy(predict, gt):
    eps = 1e-4
    predict = np.clip(predict, a_max=1 - eps, a_min=eps)  # 裁切
    batch_size = predict.shape[0]
    return -np.sum(gt * np.log(predict) + (1 - gt) * np.log(1 - predict)) / batch_size


def lr_schedule_cosine(lr_min, lr_max, per_epochs):
    def compute(epoch):
        return lr_min + 0.5 * (lr_max - lr_min) * (1 + np.cos(epoch / per_epochs * np.pi))

    return compute


import matplotlib.pyplot as plt


def sigmoid(x):
    return 1 / (1 + np.exp(-x))


classes = 10  # 定义10个类别
batch_size = 512  # 定义每个批次的大小
lr_warm_up_alpha = 1e-2  # 定义warm up的起点值
lr_min = 1e-4  # cosine学习率的最小值
lr_max = 1e-1  # cosine学习率的最大值
epochs = 10  # 退出策略,也就是最大把所有数据看10次
numdata, data_dims = train_images.shape  # 60000, 785

# 定义dataloader和dataset,用于数据抓取
train_data = DataLoader(Dataset(train_images, one_hot(train_labels, classes)), batch_size, shuffle=True)

# 初始化theta参数,采用正态分布,大小是数据维度为行,类别数为列。kaiming
theta = np.random.normal(size=(data_dims, classes))
iters = 0  # 定义迭代次数,因为我们需要展示loss曲线,那么x将会是iters

# 定义warm up的参数,我们在开始值是0.01,1轮时为0.1,2轮时回归cosine学习率,所以是1
lr_warm_up_schedule = {
    1: 1e-1,
    2: 1
}

cosine_total_epoch = 3  # 定义cosine学习率的周期大小,固定为3.
cosine_itepoch = 0  # 定义cosine学习率的周期内epoch索引
lr_cosine_schedule = lr_schedule_cosine(lr_min, lr_max, cosine_total_epoch)  # 定义cosine学习率的函数,指定好参数
train_losses = []  # 定义train loss的收集变量,用于后面的绘图展示
val_losses = []  # 定义val loss的收集变量(accuracy,loss),用于后面的绘图展示

# 开始进行epoch循环,总数是epochs次
for epoch in range(epochs):

    # 如果cosine学习率的周期索引达到了周期的最后一次时,将其索引置位为0,相当于是周期性重启的意思
    if cosine_itepoch == cosine_total_epoch:
        cosine_itepoch = 0

    # 通过周期epoch索引来计算当前应该给定的学习率值
    lr_select = lr_cosine_schedule(cosine_itepoch)

    # 周期索引+1
    cosine_itepoch += 1

    # 如果当前的迭代次数在warm up计划改变的节点时。就修改warm up的alpha值为当前需要修改的值
    if epoch in lr_warm_up_schedule:
        lr_warm_up_alpha = lr_warm_up_schedule[epoch]

    # 定义最终的学习率,是等于cosine学习率 * warm_up_alpha
    lr = lr_select * lr_warm_up_alpha
    print(f"Set learning rate to {lr:.5f}")

    # 对一个批次内的数据进行迭代,每一次迭代都是一个batch(即256)
    for index, (images, labels) in enumerate(train_data):

        # 计算预测值
        predict = images @ theta  # n * 785    dot   785  * 10   =  n * 10

        # 转换为概率
        predict = sigmoid(predict)

        # 计算loss值
        loss = cross_entropy(predict, labels)

        # 计算theta的梯度
        d_theta = images.T @ (predict - labels)  # 785xn  dot  nx10  = 785 x 10

        # 更新theta。除以batch_size是为了求平均值
        theta = theta - lr * d_theta / batch_size
        iters += 1

        # 记录当前的迭代信息和loss值,为后面展示做准备
        train_losses.append([iters, loss])

        if index % 100 == 0:
            print(f"Iter {iters}. {epoch} / {epochs}, Loss: {loss:.3f}, Learning Rate: {lr:.5f}")

    # 每一轮结束后,每把数据全看完一遍后,使用theta对测试数据集进行测试。来检验训练效果
    val_accuracy, val_loss = estimate_val(val_images, val_labels, theta, classes)

    # 记录val的loss和accuracy,用于后面展示
    val_losses.append([iters, val_accuracy, val_loss])
    print(f"Val set, Accuracy: {val_accuracy}, Loss: {val_loss}")
View Code

上面的结果为

E:\anaconda\python.exe E:/dustartlearnproject/minstLearn/minst.py
Set learning rate to 0.00100
Iter 1. 0 / 10, Loss: 24.275, Learning Rate: 0.00100
Iter 101. 0 / 10, Loss: 16.112, Learning Rate: 0.00100
Val set, Accuracy: 0.0967, Loss: 15.854472258208313
Set learning rate to 0.00750
Iter 119. 1 / 10, Loss: 16.177, Learning Rate: 0.00750
Iter 219. 1 / 10, Loss: 10.643, Learning Rate: 0.00750
Val set, Accuracy: 0.1025, Loss: 10.272491602919825
Set learning rate to 0.02508
Iter 237. 2 / 10, Loss: 9.819, Learning Rate: 0.02508
Iter 337. 2 / 10, Loss: 7.824, Learning Rate: 0.02508
Val set, Accuracy: 0.2056, Loss: 7.8075571751523665
Set learning rate to 0.10000
Iter 355. 3 / 10, Loss: 7.838, Learning Rate: 0.10000
Iter 455. 3 / 10, Loss: 3.850, Learning Rate: 0.10000
Val set, Accuracy: 0.5677, Loss: 3.6745011642839085
Set learning rate to 0.07503
Iter 473. 4 / 10, Loss: 3.915, Learning Rate: 0.07503
Iter 573. 4 / 10, Loss: 3.122, Learning Rate: 0.07503
Val set, Accuracy: 0.658, Loss: 2.8318372736284445
Set learning rate to 0.02508
Iter 591. 5 / 10, Loss: 3.012, Learning Rate: 0.02508
Iter 691. 5 / 10, Loss: 2.516, Learning Rate: 0.02508
Val set, Accuracy: 0.6794, Loss: 2.663056994692587
Set learning rate to 0.10000
Iter 709. 6 / 10, Loss: 2.822, Learning Rate: 0.10000
Iter 809. 6 / 10, Loss: 2.314, Learning Rate: 0.10000
Val set, Accuracy: 0.7327, Loss: 2.230728843855682
Set learning rate to 0.07503
Iter 827. 7 / 10, Loss: 2.326, Learning Rate: 0.07503
Iter 927. 7 / 10, Loss: 2.068, Learning Rate: 0.07503
Val set, Accuracy: 0.7574, Loss: 2.0282295027093924
Set learning rate to 0.02508
Iter 945. 8 / 10, Loss: 2.028, Learning Rate: 0.02508
Iter 1045. 8 / 10, Loss: 2.148, Learning Rate: 0.02508
Val set, Accuracy: 0.7653, Loss: 1.9720897257607903
Set learning rate to 0.10000
Iter 1063. 9 / 10, Loss: 2.035, Learning Rate: 0.10000
Iter 1163. 9 / 10, Loss: 1.891, Learning Rate: 0.10000
Val set, Accuracy: 0.7832, Loss: 1.8004302841913162

Process finished with exit code 0

基本没有问题但是如果修改了

 

 如果不做裁切的话

 

 

E:\anaconda\python.exe E:/dustartlearnproject/minstLearn/minst.py
Set learning rate to 0.00100
Iter 1. 0 / 10, Loss: nan, Learning Rate: 0.00100
E:\dustartlearnproject\minstLearn\minst.py:168: RuntimeWarning: divide by zero encountered in log
  return -np.sum(gt * np.log(predict) + (1 - gt) * np.log(1 - predict)) / batch_size
E:\dustartlearnproject\minstLearn\minst.py:168: RuntimeWarning: invalid value encountered in multiply
  return -np.sum(gt * np.log(predict) + (1 - gt) * np.log(1 - predict)) / batch_size
Iter 101. 0 / 10, Loss: inf, Learning Rate: 0.00100
Val set, Accuracy: 0.0895, Loss: 48.24693390577862
Set learning rate to 0.00750
Iter 119. 1 / 10, Loss: 49.018, Learning Rate: 0.00750
Iter 219. 1 / 10, Loss: 12.323, Learning Rate: 0.00750
Val set, Accuracy: 0.1176, Loss: 12.242563352955944
Set learning rate to 0.02508
Iter 237. 2 / 10, Loss: 11.778, Learning Rate: 0.02508
Iter 337. 2 / 10, Loss: 9.340, Learning Rate: 0.02508
Val set, Accuracy: 0.2352, Loss: 8.752362999505012
Set learning rate to 0.10000
Iter 355. 3 / 10, Loss: 8.544, Learning Rate: 0.10000
Iter 455. 3 / 10, Loss: 4.175, Learning Rate: 0.10000
Val set, Accuracy: 0.5513, Loss: 3.981317252906817
Set learning rate to 0.07503
Iter 473. 4 / 10, Loss: 4.012, Learning Rate: 0.07503
Iter 573. 4 / 10, Loss: 3.343, Learning Rate: 0.07503
Val set, Accuracy: 0.648, Loss: 3.0855568357946415
Set learning rate to 0.02508
Iter 591. 5 / 10, Loss: 3.164, Learning Rate: 0.02508
Iter 691. 5 / 10, Loss: 3.096, Learning Rate: 0.02508
Val set, Accuracy: 0.6668, Loss: 2.901230304990213
Set learning rate to 0.10000
Iter 709. 6 / 10, Loss: 2.972, Learning Rate: 0.10000
Iter 809. 6 / 10, Loss: 2.644, Learning Rate: 0.10000
Val set, Accuracy: 0.7176, Loss: 2.42363543726263
Set learning rate to 0.07503
Iter 827. 7 / 10, Loss: 2.563, Learning Rate: 0.07503
Iter 927. 7 / 10, Loss: 2.370, Learning Rate: 0.07503
Val set, Accuracy: 0.7415, Loss: 2.19418632803101
Set learning rate to 0.02508
Iter 945. 8 / 10, Loss: 2.054, Learning Rate: 0.02508
Iter 1045. 8 / 10, Loss: 2.033, Learning Rate: 0.02508
Val set, Accuracy: 0.7482, Loss: 2.1308324327122503
Set learning rate to 0.10000
Iter 1063. 9 / 10, Loss: 2.322, Learning Rate: 0.10000
Iter 1163. 9 / 10, Loss: 1.971, Learning Rate: 0.10000
Val set, Accuracy: 0.7704, Loss: 1.940373967677279

Process finished with exit code 0

这次没有出现其实出现过

 

posted on 2022-10-23 08:02  哦哟这个怎么搞  阅读(42)  评论(0编辑  收藏  举报