Python - - 并发编程 - - 进程
目录
- 理论知识
- 操作系统背景知识
- 什么是进程
- 进程调度
- 进程的并发与并行
- 同步\异步\阻塞\非阻塞
- 进程的创建与结束
- 在python程序中的进程操作
- multiprocess模块
- multiprocess.Process
- 进程同步控制 —— 锁\信号量\事件 (multiprocess.Lock、multiprocess.Semaphore、multiprocess.Event)
- 进程间通信 —— 队列和管道(multiprocess.Queue、multiprocess.Pipe)
- 进程间的数据共享 —— multiprocess.Manager
- 进程池和multiprocess.Pool
1, 理论知识
1.1 操作系统背景知识
- 顾名思义,进程即正在执行的一个过程。进程是对正在运行程序的一个抽象
- 进程的概念起源于操作系统,是操作系统最核心的概念,也是操作系统提供的最古老也是最重要的抽象概念之一。操作系统的其它所有内容都是围绕进程的概念展开的
- 所以想要了解进程,必须事先了解操作系统,http://www.cnblogs.com/Eva-J/articles/8253521.html
- PS:即使可以利用的cpu只有一个(早期的计算机确实如此),也能保证支持(伪)并发的能力。将一个单独的cpu变成多个虚拟的cpu(多道技术:时间多路复用和空间多路复用+硬件上支持隔离),没有进程的抽象,现代计算机将不复存在。
- 一 操作系统的作用:
- 1:隐藏丑陋复杂的硬件接口,提供良好的抽象接口
- 2:管理、调度进程,并且将多个进程对硬件的竞争变得有序
- 二 多道技术:
- 1.产生背景:针对单核,实现并发
- ps:
- 现在的主机一般是多核,那么每个核都会利用多道技术
- 有4个cpu,运行于cpu1的某个程序遇到io阻塞,会等到io结束再重新调度,会被调度到4个
- cpu中的任意一个,具体由操作系统调度算法决定。
- 2.空间上的复用:如内存中同时有多道程序
- 3.时间上的复用:复用一个cpu的时间片
- 强调:遇到io切,占用cpu时间过长也切,核心在于切之前将进程的状态保存下来,这样
- 才能保证下次切换回来时,能基于上次切走的位置继续运行
1.2 什么是进程
-
进程(Process)是计算机中程序关于某数据集合的一次运行活动,是系统进行资源分配和调度的基本单位,是操作系统结构的基础。在早期面向进程设计的计算机结构中,进程是程序的基本执行实体;在当代面向线程设计的计算机结构中,进程是线程的容器。程序是指令、数据及其组织形式的描述,进程是程序的实体
-
狭义定义:进程是正在运行的程序的实例((an instance of a computer program that is being executed)。
-
广义定义:进程是一个具有一定独立功能的程序关于某个数据集合的一次运行活动。它是操作系统动态执行的基本单元,在传统的操作系统中,进程既是基本的分配单元,也是基本的执行单元。
-
进程的概念
- 第一,进程是一个实体。每一个进程都有它自己的地址空间,一般情况下,包括文本区域(text region)、数据区域(data region)和堆栈(stack region)。文本区域存储处理器执行的代码;数据区域存储变量和进程执行期间使用的动态分配的内存;堆栈区域存储着活动过程调用的指令和本地变量。
- 第二,进程是一个“执行中的程序”。程序是一个没有生命的实体,只有处理器赋予程序生命时(操作系统执行之),它才能成为一个活动的实体,我们称其为进程。[3]
- 进程是操作系统中最基本、重要的概念。是多道程序系统出现后,为了刻画系统内部出现的动态情况,描述系统内部各道程序的活动规律引进的一个概念,所有多道程序设计操作系统都建立在进程的基础上。
-
操作系统引入进程的概念的原因
- 从理论角度看,是对正在运行的程序过程的抽象;
- 从实现角度看,是一种数据结构,目的在于清晰地刻画动态系统的内在规律,有效管理和调度进入计算机系统主存储器运行的程序。
-
进程的特征
- 动态性:进程的实质是程序在多道程序系统中的一次执行过程,进程是动态产生,动态消亡的。
- 并发性:任何进程都可以同其他进程一起并发执行
- 独立性:进程是一个能独立运行的基本单位,同时也是系统分配资源和调度的独立单位;
- 异步性:由于进程间的相互制约,使进程具有执行的间断性,即进程按各自独立的、不可预知的速度向前推进
- 结构特征:进程由程序、数据和进程控制块三部分组成。
- 多个不同的进程可以包含相同的程序:一个程序在不同的数据集里就构成不同的进程,能得到不同的结果;但是执行过程中,程序不能发生改变。
-
进程与程序中的区别
- 程序是指令和数据的有序集合,其本身没有任何运行的含义,是一个静态的概念。
- 而进程是程序在处理机上的一次执行过程,它是一个动态的概念。
- 程序可以作为一种软件资料长期存在,而进程是有一定生命期的。
- 程序是永久的,进程是暂时的。
-
注意:同一个程序执行两次,就会在操作系统中出现两个进程,所以我们可以同时运行一个软件,分别做不同的事情也不会混乱。
1.3 进程调度
-
要想多个进程交替运行,操作系统必须对这些进程进行调度,这个调度也不是随即进行的,而是需要遵循一定的法则,由此就有了进程的调度算法。
-
先来先服务调度算法
- 先来先服务(FCFS)调度算法是一种最简单的调度算法,该算法既可用于作业调度,也可用于进程调度。FCFS算法比较有利于长作业(进程),而不利于短作业(进程)。由此可知,本算法适合于CPU繁忙型作业,而不利于I/O繁忙型的作业(进程)。
-
短作业优先调度算法
- 短作业(进程)优先调度算法(SJ/PF)是指对短作业或短进程优先调度的算法,该算法既可用于作业调度,也可用于进程调度。但其对长作业不利;不能保证紧迫性作业(进程)被及时处理;作业的长短只是被估算出来的。
-
时间片轮转法
- 时间片轮转(Round Robin,RR)法的基本思路是让每个进程在就绪队列中的等待时间与享受服务的时间成比例。在时间片轮转法中,需要将CPU的处理时间分成固定大小的时间片,例如,几十毫秒至几百毫秒。如果一个进程在被调度选中之后用完了系统规定的时间片,但又未完成要求的任务,则它自行释放自己所占有的CPU而排到就绪队列的末尾,等待下一次调度。同时,进程调度程序又去调度当前就绪队列中的第一个进程。
- 显然,轮转法只能用来调度分配一些可以抢占的资源。这些可以抢占的资源可以随时被剥夺,而且可以将它们再分配给别的进程。CPU是可抢占资源的一种。但打印机等资源是不可抢占的。由于作业调度是对除了CPU之外的所有系统硬件资源的分配,其中包含有不可抢占资源,所以作业调度不使用轮转法。
- 在轮转法中,时间片长度的选取非常重要。首先,时间片长度的选择会直接影响到系统的开销和响应时间。如果时间片长度过短,则调度程序抢占处理机的次数增多。这将使进程上下文切换次数也大大增加,从而加重系统开销。反过来,如果时间片长度选择过长,例如,一个时间片能保证就绪队列中所需执行时间最长的进程能执行完毕,则轮转法变成了先来先服务法。时间片长度的选择是根据系统对响应时间的要求和就绪队列中所允许最大的进程数来确定的。
- 在轮转法中,加入到就绪队列的进程有3种情况:
- 一种是分给它的时间片用完,但进程还未完成,回到就绪队列的末尾等待下次调度去继续执行。
- 另一种情况是分给该进程的时间片并未用完,只是因为请求I/O或由于进程的互斥与同步关系而被阻塞。当阻塞解除之后再回到就绪队列。
- 第三种情况就是新创建进程进入就绪队列。
- 如果对这些进程区别对待,给予不同的优先级和时间片从直观上看,可以进一步改善系统服务质量和效率。例如,我们可把就绪队列按照进程到达就绪队列的类型和进程被阻塞时的阻塞原因分成不同的就绪队列,每个队列按FCFS原则排列,各队列之间的进程享有不同的优先级,但同一队列内优先级相同。这样,当一个进程在执行完它的时间片之后,或从睡眠中被唤醒以及被创建之后,将进入不同的就绪队列。
-
多级反馈队列
- 前面介绍的各种用作进程调度的算法都有一定的局限性。如短进程优先的调度算法,仅照顾了短进程而忽略了长进程,而且如果并未指明进程的长度,则短进程优先和基于进程长度的抢占式调度算法都将无法使用。
- 而多级反馈队列调度算法则不必事先知道各种进程所需的执行时间,而且还可以满足各种类型进程的需要,因而它是目前被公认的一种较好的进程调度算法。在采用多级反馈队列调度算法的系统中,调度算法的实施过程如下所述。
- (1) 应设置多个就绪队列,并为各个队列赋予不同的优先级。第一个队列的优先级最高,第二个队列次之,其余各队列的优先权逐个降低。该算法赋予各个队列中进程执行时间片的大小也各不相同,在优先权愈高的队列中,为每个进程所规定的执行时间片就愈小。例如,第二个队列的时间片要比第一个队列的时间片长一倍,……,第i+1个队列的时间片要比第i个队列的时间片长一倍。
- (2) 当一个新进程进入内存后,首先将它放入第一队列的末尾,按FCFS原则排队等待调度。当轮到该进程执行时,如它能在该时间片内完成,便可准备撤离系统;如果它在一个时间片结束时尚未完成,调度程序便将该进程转入第二队列的末尾,再同样地按FCFS原则等待调度执行;如果它在第二队列中运行一个时间片后仍未完成,再依次将它放入第三队列,……,如此下去,当一个长作业(进程)从第一队列依次降到第n队列后,在第n 队列便采取按时间片轮转的方式运行。
- (3) 仅当第一队列空闲时,调度程序才调度第二队列中的进程运行;仅当第1~(i-1)队列均空时,才会调度第i队列中的进程运行。如果处理机正在第i队列中为某进程服务时,又有新进程进入优先权较高的队列(第1~(i-1)中的任何一个队列),则此时新进程将抢占正在运行进程的处理机,即由调度程序把正在运行的进程放回到第i队列的末尾,把处理机分配给新到的高优先权进程。
1.4 进程的并发与并行
- 并行 : 并行是指两者同时执行,比如赛跑,两个人都在不停的往前跑;(资源够用,比如三个线程,四核的CPU )
- 并发 : 并发是指资源有限的情况下,两者交替轮流使用资源,比如一段路(单核CPU资源)同时只能过一个人,A走一段后,让给B,B用完继续给A ,交替使用,目的是提高效率。
- 区别:
- 并行是从微观上,也就是在一个精确的时间片刻,有不同的程序在执行,这就要求必须有多个处理器。
- 并发是从宏观上,在一个时间段上可以看出是同时执行的,比如一个服务器同时处理多个session。
1.5 同步\异步\阻塞\非阻塞
1.5.1 状态介绍
- 在程序运行的过程中,由于被操作系统的调度算法控制,程序会进入几个状态:就绪,运行和阻塞
- 1,就绪(ready)状态
- 当进程已分配到除CPU以外的所有必要的资源,只要获得处理机便可立即执行,这时的进程状态称为就绪状态。
- 2,执行/运行(Running)状态
- 当进程已获得处理机,其程序正在处理机上执行,此时的进程状态称为执行状态。
- 3,阻塞(Blocked)状态
- 当正在执行的进程,由于等待某个事件发生而无法执行时,便放弃处理机而处于阻塞状态。引起进程阻塞的事件可有多种,例如,等待I/O完成、申请缓冲区不能满足、等待信件(信号)等。
- 1,就绪(ready)状态
1.5.2 同步和异步
- 同步就是一个任务的完成需要依赖另外一个任务时,只有等待被依赖的任务完成后,依赖的任务才能算完成,这是一种可靠的任务序列。要么成功都成功,失败都失败,两个任务的状态可以保持一致。
- 异步是不需要等待被依赖的任务完成,只是通知被依赖的任务要完成什么工作,依赖的任务也立即执行,只要自己完成了整个任务就算完成了。至于被依赖的任务最终是否真正完成,依赖它的任务无法确定,所以它是不可靠的任务序列。
1.5.3 阻塞与非阻塞
- 阻塞和非阻塞这两个概念与程序(线程)等待消息通知(无所谓同步或者异步)时的状态有关。也就是说阻塞与非阻塞主要是程序(线程)等待消息通知时的状态角度来说的
1.5.4 同步/异步与阻塞/非阻塞
- 同步阻塞形式
- 效率最低。
- 如果去银行办业务,只是专心排队,啥都不做
- 效率最低。
- 异步阻塞形式
- 异步操作是可以被阻塞住的,只不过它不是在处理消息时阻塞,而是在等待消息通知时被阻塞。
- 如果在银行等待办理业务的人采用的是异步的方式去等待消息被触发(通知),也就是领了一张小纸条,假如在这段时间里他不能离开银行做其它的事情,那么很显然,这个人被阻塞在了这个等待的操作上面;
- 异步操作是可以被阻塞住的,只不过它不是在处理消息时阻塞,而是在等待消息通知时被阻塞。
- 同步非阻塞形式
- 实际上是效率低下的。
- 想象一下你一边打着电话一边还需要抬头看到底队伍排到你了没有,如果把打电话和观察排队的位置看成是程序的两个操作的话,这个程序需要在这两种不同的行为之间来回的切换,效率可想而知是低下的。
- 实际上是效率低下的。
- 异步非阻塞形式
- 效率更高
- 因为打电话是你(等待者)的事情,而通知你则是柜台(消息触发机制)的事情,程序没有在两种不同的操作中来回切换。
- 比如说,这个人突然发觉自己烟瘾犯了,需要出去抽根烟,于是他告诉大堂经理说,排到我这个号码的时候麻烦到外面通知我一下,那么他就没有被阻塞在这个等待的操作上面,自然这个就是异步+非阻塞的方式了。
- 效率更高
- 很多人会把同步和阻塞混淆,是因为很多时候同步操作会以阻塞的形式表现出来,同样的,很多人也会把异步和非阻塞混淆,因为异步操作一般都不会在真正的IO操作处被阻塞。
1.6 进程的创建与结束
1.6.1 进程的创建
-
但凡是硬件,都需要有操作系统去管理,只要有操作系统,就有进程的概念,就需要有创建进程的方式,一些操作系统只为一个应用程序设计
-
而对于通用系统(跑很多应用程序),需要有系统运行过程中创建或撤销进程的能力,主要分为4中形式创建新的进程:
- 1 系统初始化(查看进程linux中用ps命令,windows中用任务管理器,前台进程负责与用户交互,后台运行的进程与用户无关,运行在后台并且只在需要时才唤醒的进程,称为守护进程,如电子邮件、web页面、新闻、打印)
- 2 一个进程在运行过程中开启了子进程(如nginx开启多进程,os.fork,subprocess.Popen等)
- 3用户的交互式请求,而创建一个新进程(如用户双击暴风影音)
- 4 一个批处理作业的初始化(只在大型机的批处理系统中应用)
-
无论哪一种,新进程的创建都是由一个已经存在的进程执行了一个用于创建进程的系统调用而创建的。
-
关于创建进程
- 1 在UNIX中该系统调用是:fork,fork会创建一个与父进程一模一样的副本,二者有相同的存储映像、同样的环境字符串和同样的打开文件(在shell解释器进程中,执行一个命令就会创建一个子进程)
- 2 在windows中该系统调用是:CreateProcess,CreateProcess既处理进程的创建,也负责把正确的程序装入新进程。
-
关于创建子进程,UNIX和windows
- 1 相同的是:进程创建后,父进程和子进程有各自不同的地址空间(多道技术要求物理层面实现进程之间内存的隔离),任何一个进程的在其地址空间中的修改都不会影响到另外一个进程。
- 2 不同的是:在UNIX中,子进程的初始地址空间是父进程的一个副本,提示:子进程和父进程是可以有只读的共享内存区的。但是对于windows系统来说,从一开始父进程与子进程的地址空间就是不同的。
1.6.2 进程的结束
- 1 正常退出(自愿,如用户点击交互式页面的叉号,或程序执行完毕调用发起系统调用正常退出,在linux中用exit,在windows中用ExitProcess)
- 2 出错退出(自愿,python a.py中a.py不存在)
- 3 严重错误(非自愿,执行非法指令,如引用不存在的内存,1/0等,可以捕捉异常,try...except...)
- 4 被其他进程杀死(非自愿,如kill -9)
2, 在python程序中的进程操作
- 运行中的程序就是一个进程。所有的进程都是通过它的父进程来创建的。因此,运行起来的python程序也是一个进程,那么我们也可以在程序中再创建进程。多个进程可以实现并发效果,也就是说,当我们的程序中存在多个进程的时候,在某些时候,就会让程序的执行速度变快。以我们之前所学的知识,并不能实现创建进程这个功能,所以我们就需要借助python中强大的模块。
2.1 multiprocess模块
- multiprocess不是一个模块而是python中一个操作、管理进程的包。 之所以叫multi是取自multiple的多功能的意思,在这个包中几乎包含了和进程有关的所有子模块。由于提供的子模块非常多,为了方便大家归类记忆,我将这部分大致分为四个部分:创建进程部分,进程同步部分,进程池部分,进程之间数据共享。
2.2 multiprocess.Process
2.2.1 Process 模块介绍
- Process模块是一个创建进程的模块,借助这个模块,就可以完成进程的创建。
Process([group [, target [, name [, args [, kwargs]]]]]),由该类实例化得到的对象,表示一个子进程中的任务(尚未启动)
- 强调:
- 1 需要使用关键字的方式来指定参数
- 2 args指定的为传给target函数的位置参数,是一个元组形式,必须有逗号
- 参数介绍:
- 1 group参数未使用,值始终为None
- 2 target表示调用对象,即子进程要执行的任务
- 3 args表示调用对象的位置参数元组,args=(1,2,'egon',)
- 4 kwargs表示调用对象的字典,kwargs=
- 5 name为子进程的名称
- 方法介绍
- 1 p.start():启动进程,并调用该子进程中的p.run()
- 2 p.run():进程启动时运行的方法,正是它去调用target指定的函数,我们自定义类的类中一定要实现该方法
- 3 p.terminate():强制终止进程p,不会进行任何清理操作,如果p创建了子进程,该子进程就成了僵尸进程,使用该方法需要特别小心这种情况。如果p还保存了一个锁那么也将不会被释放,进而导致死锁
- 4 p.is_alive():如果p仍然运行,返回True
- 5 p.join([timeout]):主线程等待p终止(强调:是主线程处于等的状态,而p是处于运行的状态)。timeout是可选的超时时间,需要强调的是,p.join只能join住start开启的进程,而不能join住run开启的进程
- 属性介绍
- 1 p.daemon:默认值为False,如果设为True,代表p为后台运行的守护进程,当p的父进程终止时,p也随之终止,并且设定为True后,p不能创建自己的新进程,必须在p.start()之前设置
- 2 p.name:进程的名称
- 3 p.pid:进程的pid
- 4 p.exitcode:进程在运行时为None、如果为–N,表示被信号N结束(了解即可)
- 5 p.authkey:进程的身份验证键,默认是由os.urandom()随机生成的32字符的字符串。这个键的用途是为涉及网络连接的底层进程间通信提供安全性,这类连接只有在具有相同的身份验证键时才能成功(了解即可)
- 在windows中使用process模块的注意事项
- 在Windows操作系统中由于没有fork(linux操作系统中创建进程的机制),在创建子进程的时候会自动 import 启动它的这个文件,而在 import 的时候又执行了整个文件。因此如果将process()直接写在文件中就会无限递归创建子进程报错。所以必须把创建子进程的部分使用if name ==‘main’ 判断保护起来,import 的时候 ,就不会递归运行了。
2.2.2 使用process模块创建进程
- 在一个python进程中开启子进程,start方法和并发效果。
- 在python中启动的第一个子进程
import time
from multiprocessing import Process
def f(name):
print('hello', name)
print('我是子进程')
if __name__ == '__main__':
p = Process(target=f, args=('bob',))
p.start()
time.sleep(1)
print('执行主进程的内容了')
# 结果呈现
hello bob
我是子进程
执行主进程的内容了
- 查看进程及进程号
import os
from multiprocessing import Process
def fun(*args):
print(args)
print("子进程 :", os.getpid())
print("子进程的父进程 :", os.getppid())
print(12345)
if __name__ == "__main__":
p = Process(target=fun,args=("参数","参数2")) # 注册
# p是一个进程对象,还没有启动进程
p.start() # 开启了子进程
print("*"*10)
print("父进程 :", os.getpid())
print("父进程的父进程 :", os.getppid())
# 结果呈现
**********
父进程 : 17756
父进程的父进程 : 9348
('参数', '参数2')
子进程 : 26576
子进程的父进程 : 17756
12345
- join 方法
import time
from multiprocessing import Process
def f(name):
print('hello', name)
print('我是子进程')
if __name__ == '__main__':
p = Process(target=f, args=('bob',))
p.start()
p.join()
print('执行主进程的内容了')
# 结果呈现
hello bob
我是子进程
执行主进程的内容了
-
进阶,多个进程同时运行(注意,子进程的执行顺序不是根据启动顺序决定的)
-
多个进程同时运行
import time,os
from multiprocessing import Process
def func(arg1,arg2):
print("*"*arg1)
time.sleep(5)
print("*"*arg2)
if __name__ == "__main__":
p_lst = []
for i in range(10):
p = Process(target=func,args=(10*i,20*i))
p_lst.append(p)
p.start()
[p.join() for p in p_lst]
# p.join() # 感知一个子进程的结束,将异步的程序改为同步
print("===== : 运行完了")
# 结果呈现
********************
****************************************
************************************************************
********************************************************************************
****************************************************************************************************
************************************************************************************************************************
********************************************************************************************************************************************
****************************************************************************************************************************************************************
************************************************************************************************************************************************************************************
===== : 运行完了
- 除了上面这些开启进程的方法,还有一种以继承Process类的形式开启进程的方式
- 通过继承Process类开启进程
import os
from multiprocessing import Process
class MyProcess(Process):
def __init__(self,arg1,arg2):
super().__init__()
self.arg1 = arg1
self.arg2 = arg2
def run(self):
print(self.pid)
print(os.getpid())
print(self.name)
print(self.arg1)
print(self.arg2)
if __name__ == "__main__":
print("主进程:", os.getpid())
p1 = MyProcess(1,2)
p1.start()
p2 = MyProcess(3,4)
p2.start()
# 自定义类,继承Process类
# 必须实现一个 run方法,run 方法中是在子进程中执行的代码
# 结果呈现
主进程: 26108
25796
25796
MyProcess-1
1
2
25940
25940
MyProcess-2
3
4
- 进程之间的数据隔离问题
import os
from multiprocessing import Process
def func():
global n
n = 0
print("pid : %s" % os.getpid(), n)
if __name__ == "__main__":
n = 100
p = Process(target=func)
p.start()
p.join()
print(os.getpid(),n)
# 结果呈现
pid : 25784 0
27432 100
2.2.3 守护进程
-
会随着主进程的结束而结束
-
主进程创建守护进程
- 其一:守护进程会在主进程代码执行结束后就终止
- 其二:守护进程内无法再开启子进程,否则抛出异常:AssertionError: daemonic processes are not allowed to have children
-
:进程之间是互相独立的,主进程代码运行结束,守护进程随即终止
-
主进程代码执行结束守护进程立即结束
-
守护进程以及进程对象的其他方法:terminate,is_alive,pid和name
import time
from multiprocessing import Process
def func():
while True:
time.sleep(0.5)
print("我是谁")
def func2():
print("in func2 start")
time.sleep(8)
print("in func2 finished")
if __name__ == "__main__":
p = Process(target=func)
p.daemon = True # 设置子进程为守护进程
p.start()
p2 = Process(target=func2)
p2.start()
p2.terminate() # 结束一个子进程
print(p2.is_alive()) # 检验一个进程是否还活着
time.sleep(1)
print(p2.is_alive())
print(p2.name) # 该进程的名字
# i = 0
# while i < 10:
# print("我是socket server")
# time.sleep(1)
# i += 1
# 守护进程 会 随着 主进程的代码执行完毕 而 结束
# 在主进程内结束一个子进程 p2.terminate()
# 结束一个进程不是在执行方法之后立即生效,而是需要一个操作系统响应的过程
# 检验一个进程是否活着的状态 p.is_alive()
# p.name 进程的名称
# p.pid 进程号
# 结果呈现
True
我是谁
False
Process-2
2.2.4 socket聊天并发实例
- server
from socket import *
from multiprocessing import Process
server=socket(AF_INET,SOCK_STREAM)
server.setsockopt(SOL_SOCKET,SO_REUSEADDR,1)
server.bind(('127.0.0.1',8080))
server.listen(5)
def talk(conn,client_addr):
while True:
try:
msg=conn.recv(1024)
if not msg:break
conn.send(msg.upper())
except Exception:
break
if __name__ == '__main__': #windows下start进程一定要写到这下面
while True:
conn,client_addr=server.accept()
p=Process(target=talk,args=(conn,client_addr))
p.start()
- client
from socket import *
client=socket(AF_INET,SOCK_STREAM)
client.connect(('127.0.0.1',8080))
while True:
msg=input('>>: ').strip()
if not msg:continue
client.send(msg.encode('utf-8'))
msg=client.recv(1024)
print(msg.decode('utf-8'))
2.2.5 使用多进程实现socket 服务端的并发
- server
import socket
from multiprocessing import Process
def server(conn):
ret = "你好".encode("utf-8")
conn.send(ret)
msg = conn.recv(1024).decode("utf-8")
print(msg)
conn.close()
if __name__ == "__main__":
sk = socket.socket()
sk.bind(("127.0.0.1",8080))
sk.listen()
while True:
conn,addr = sk.accept()
p = Process(target=server,args=(conn,))
p.start()
sk.close()
- client
import socket
sk = socket.socket()
sk.connect(("127.0.0.1", 8080))
sk.send("你好".encode("utf-8"))
msg = sk.recv(1024).decode("utf-8")
print(msg)
msg2 = input(">>>").encode("utf-8")
sk.send(msg2)
sk.close()
2.3 进程同步控制 —— 锁\信号量\事件(multiprocess.Lock、multiprocess.Semaphore、multiprocess.Event)
2.3.1 锁 —— multiprocess.Lock
- 通过刚刚的学习,我们千方百计实现了程序的异步,让多个任务可以同时在几个进程中并发处理,他们之间的运行没有顺序,一旦开启也不受我们控制。尽管并发编程让我们能更加充分的利用IO资源,但是也给我们带来了新的问题。
- 当多个进程使用同一份数据资源的时候,就会引发数据安全或顺序混乱问题。
- 多进程抢占输出资源
import os,time,random
from multiprocessing import Process
def work(n):
print("{}: {} is running".format(n,os.getpid()))
time.sleep(random.random())
print("{}: {} is done".format(n,os.getpid()))
if __name__ == '__main__':
for i in range(5):
p = Process(target=work,args=(i,))
p.start()
# 结果呈现
0: 30524 is running
1: 26084 is running
2: 29644 is running
2: 29644 is done
3: 29676 is running
4: 29820 is running
3: 29676 is done
0: 30524 is done
1: 26084 is done
4: 29820 is done
- 使用锁维护执行顺序
import os,time,random
from multiprocessing import Process,Lock
def work(n,lock):
lock.acquire()
print("{}: {} is running".format(n,os.getpid()))
time.sleep(random.random())
print("{}: {} is done".format(n,os.getpid()))
lock.release()
if __name__ == '__main__':
lock = Lock()
for i in range(5):
p = Process(target=work,args=(i,lock))
p.start()
# 结果呈现
0: 28592 is running
0: 28592 is done
1: 28572 is running
1: 28572 is done
2: 28276 is running
2: 28276 is done
3: 28884 is running
3: 28884 is done
4: 25956 is running
4: 25956 is done
- 上面这种情况虽然使用加锁的形式实现了顺序的执行,但是程序又重新变成串行了,这样确实会浪费了时间,却保证了数据的安全。
- 以模拟抢票为例,来看看数据安全的重要性。
#文件db的内容为:{"count":1}
#注意一定要用双引号,不然json无法识别
#并发运行,效率高,但竞争写同一文件,数据写入错乱
from multiprocessing import Process,Lock
import time,json,random
def search(n):
dic = json.load(open("db"))
print("\033[43m 剩余票数 %s \033[0m" % dic["count"])
def get(n):
dic = json.load(open("db"))
time.sleep(0.1) # 模拟读数据的网络延迟
if dic["count"] > 0:
dic["count"] -= 1
time.sleep(0.2) # 模拟读数据的网络延迟
json.dump(dic,open("db","w"))
print("\033[31m %s 购票成功\033[0m" % n)
def task(n):
search(n)
get(n)
if __name__ == '__main__':
for i in range(10): # 模拟并发100个客户端抢票
p = Process(target=task,args=(i,))
p.start()
# 结果呈现
剩余票数 1
剩余票数 1
剩余票数 1
剩余票数 1
剩余票数 1
剩余票数 1
剩余票数 1
0 购票成功
1 购票成功
剩余票数 0
2 购票成功
剩余票数 0
3 购票成功
剩余票数 0
4 购票成功
5 购票成功
6 购票成功
- 使用锁来保证数据安全
#文件ticket的内容为:{"ticket":5}
#注意一定要用双引号,不然json无法识别
#并发运行,效率高,但竞争写同一文件,数据写入错乱
import json,time
from multiprocessing import Process,Lock
def show(i):
with open("ticket") as f:
dic = json.load(f)
print("余票:%s"% dic["ticket"])
def buy_ticket(i,lock):
lock.acquire() # 取钥匙
with open("ticket") as f :
dic = json.load(f)
time.sleep(0.1)
if dic["ticket"] > 0:
dic["ticket"] -= 1
print("\033[32m%s买票了\033[0m"%i)
else:
print("\033[31m%s没到买票\033[0m"%i)
time.sleep(0.1)
with open("ticket", "w") as f:
json.dump(dic,f)
lock.release() # 还钥匙
if __name__ == "__main__":
for i in range(10):
p = Process(target=show,args=(i,))
p.start()
lock = Lock()
for i in range(10):
p = Process(target=buy_ticket,args=(i,lock))
p.start()
# 结果呈现
余票:5
余票:5
余票:5
余票:5
余票:5
余票:5
余票:5
余票:5
余票:5
余票:5
0买票了
1买票了
2买票了
3买票了
4买票了
5没到买票
6没到买票
7没到买票
8没到买票
9没到买票
- 加锁可以保证多个进程修改同一块数据时,同一时间只能有一个任务可以进行修改,即串行的修改,没错,速度是慢了,但牺牲了速度却保证了数据安全。
- 虽然可以用文件共享数据实现进程间通信,但问题是:
- 1.效率低(共享数据基于文件,而文件是硬盘上的数据)
- 2.需要自己加锁处理
- 因此我们最好找寻一种解决方案能够兼顾:1、效率高(多个进程共享一块内存的数据)2、帮我们处理好锁问题。这就是mutiprocessing模块为我们提供的基于消息的IPC通信机制:队列和管道。
- 队列和管道都是将数据存放于内存中
- 队列又是基于(管道+锁)实现的,可以让我们从复杂的锁问题中解脱出来,
- 我们应该尽量避免使用共享数据,尽可能使用消息传递和队列,避免处理复杂的同步和锁问题,而且在进程数目增多时,往往可以获得更好的可获展性。
2.3.2 信号量 —— multiprocess.Semaphore(了解)
- 互斥锁同时只允许一个线程更改数据,而信号量Semaphore是同时允许一定数量的线程更改数据
- 信号量同步基于内部计数器,没调用一次acquire(),计数器减1;没调用一次release(),计数器加1,当计数器为0时,acquire() 调用被阻塞。这是迪科斯彻(Dijkstra)信号量概念P()和V()的Python实现。信号量同步机制适用于访问像服务器这样的有限资源。
- 信号量与进程池的概念很像,但是要区分开,信号量涉及到加锁的概念
def ktv(i,sem):
sem.acquire() # 获取钥匙
print("%s 走进ktv" % i )
time.sleep(random.randint(1,5))
print("%s 走出ktv" % i )
sem.release()
if __name__ == "__main__":
sem = Semaphore(4)
for i in range(10):
p = Process(target=ktv, args=(i,sem))
p.start()
# 结果呈现
0 走进ktv
1 走进ktv
2 走进ktv
3 走进ktv
1 走出ktv
4 走进ktv
2 走出ktv
5 走进ktv
5 走出ktv
6 走进ktv
3 走出ktv
7 走进ktv
0 走出ktv
8 走进ktv
6 走出ktv
9 走进ktv
4 走出ktv
7 走出ktv
8 走出ktv
9 走出ktv
2.3.3 事件 —— multiprocess.Event(了解)
-
python线程的事件用于主线程控制其他线程的执行,事件主要提供了三个方法 set、wait、clear。
-
事件处理的机制:全局定义了一个“Flag”,如果“Flag”值为 False,那么当程序执行 event.wait 方法时就会阻塞,如果“Flag”值为True,那么event.wait 方法时便不再阻塞。
- wait 阻塞 收到事件状态的同步组件
- 状态 True False is_set
- True - > False clear()
- False - > True set()
- wait 状态为 True 不阻塞,状态为False的时候阻塞
- wait 阻塞 收到事件状态的同步组件
-
通过一个信号 来控制 多个进程 同时 执行或阻塞
from multiprocessing import Event
# 一个信号可以使所有的进程都进入阻塞状态
# 也可以控制所有的进程解除阻塞
# 一个事件被创建之后,默认是阻塞状态
e = Event() # 创建了一个事件
print(e.is_set()) # 查看一个事件的状态,默认被设置成阻塞
e.set() # 将这个事件的状态改为True
print(e.is_set())
e.wait() # 是依据 e.is_set() 的值来决定是否阻塞
print(123)
e.clear() # 将这个事件的状态改为False
print(e.is_set())
e.wait()
print(456)
# 结果呈现
False
True
123
False
- 红绿灯实例
from multiprocessing import Process, Event
import time, random
def car(e, n):
while True:
if not e.is_set(): # 进程刚开启,is_set()的值是Flase,模拟信号灯为红色
print('\033[31m红灯亮\033[0m,car%s等着' % n)
e.wait() # 阻塞,等待is_set()的值变成True,模拟信号灯为绿色
print('\033[32m车%s 看见绿灯亮了\033[0m' % n)
time.sleep(random.randint(3, 6))
if not e.is_set(): #如果is_set()的值是Flase,也就是红灯,仍然回到while语句开始
continue
print('车开远了,car', n)
break
def police_car(e, n):
while True:
if not e.is_set():# 进程刚开启,is_set()的值是Flase,模拟信号灯为红色
print('\033[31m红灯亮\033[0m,car%s等着' % n)
e.wait(0.1) # 阻塞,等待设置等待时间,等待0.1s之后没有等到绿灯就闯红灯走了
if not e.is_set():
print('\033[33m红灯,警车先走\033[0m,car %s' % n)
else:
print('\033[33;46m绿灯,警车走\033[0m,car %s' % n)
break
def traffic_lights(e, inverval):
while True:
time.sleep(inverval)
if e.is_set():
print('######', e.is_set())
e.clear() # ---->将is_set()的值设置为False
else:
e.set() # ---->将is_set()的值设置为True
print('***********',e.is_set())
if __name__ == '__main__':
e = Event()
for i in range(10):
p=Process(target=car,args=(e,i,)) # 创建是个进程控制10辆车
p.start()
for i in range(5):
p = Process(target=police_car, args=(e, i,)) # 创建5个进程控制5辆警车
p.start()
t = Process(target=traffic_lights, args=(e, 10)) # 创建一个进程控制红绿灯
t.start()
print('============》')
# 红绿灯事件
from multiprocessing import Event,Process
import time,random
def cars(e,i):
if not e.is_set():
print("car %i 在等待" % i)
e.wait() # 阻塞 知道得到一个 事件状态为 True 的信号
print("\033[0;32;40m car %i 通过\0330m" % i)
def traffic_light(e):
while True:
if e.is_set():
print("\033[31m红灯亮了\033[0m")
e.clear()
else:
e.set()
print("\033[32m绿灯亮了\033[0m")
time.sleep(2)
if __name__ == "__main__":
e = Event()
traffic = Process(target=traffic_light,args=(e,))
traffic.start()
for i in range(20):
car = Process(target=cars, args=(e,i))
car.start()
time.sleep(random.random())
2.4 进程间通信 —— 队列和管道(multiprocess.Queue、multiprocess.Pipe)
2.4.1 进程间通信
- IPC(Inter-Process Communication)
2.4.2 队列
2.4.2.1 概念介绍
- 创建共享的进程队列,Queue 是多进程安全的队列,可以使用 Queue 实现多进程之间的数据传递
- Queue([maxsize])
- 创建共享的进程队列。
- 参数 :maxsize是队列中允许的最大项数。如果省略此参数,则无大小限制。
- 底层队列使用管道和锁定实现。
- 另外,还需要运行支持线程以便队列中的数据传输到底层管道中。
- Queue([maxsize])
- 方法介绍
- q.get( [ block [ ,timeout ] ] )
- 返回q中的一个项目。如果q为空,此方法将阻塞,直到队列中有项目可用为止。block用于控制阻塞行为,默认为True. 如果设置为False,将引发Queue.Empty异常(定义在Queue模块中)。timeout是可选超时时间,用在阻塞模式中。如果在制定的时间间隔内没有项目变为可用,将引发Queue.Empty异常。
- q.get_nowait( )
- 同q.get(False)方法。
- q.put(item [, block [,timeout ] ] )
- 将item放入队列。如果队列已满,此方法将阻塞至有空间可用为止。block控制阻塞行为,默认为True。如果设置为False,将引发Queue.Empty异常(定义在Queue库模块中)。timeout指定在阻塞模式中等待可用空间的时间长短。超时后将引发Queue.Full异常。
- q.qsize()
- 返回队列中目前项目的正确数量。此函数的结果并不可靠,因为在返回结果和在稍后程序中使用结果之间,队列中可能添加或删除了项目。在某些系统上,此方法可能引发NotImplementedError异常。
- q.empty()
- 如果调用此方法时 q为空,返回True。如果其他进程或线程正在往队列中添加项目,结果是不可靠的。也就是说,在返回和使用结果之间,队列中可能已经加入新的项目。
- q.full()
- 如果q已满,返回为True. 由于线程的存在,结果也可能是不可靠的(参考q.empty()方法)。。
- q.close()
- 关闭队列,防止队列中加入更多数据。调用此方法时,后台线程将继续写入那些已入队列但尚未写入的数据,但将在此方法完成时马上关闭。如果q被垃圾收集,将自动调用此方法。关闭队列不会在队列使用者中生成任何类型的数据结束信号或异常。例如,如果某个使用者正被阻塞在get()操作上,关闭生产者中的队列不会导致get()方法返回错误。
- q.cancel_join_thread()
- 不会再进程退出时自动连接后台线程。这可以防止join_thread()方法阻塞。
- q.join_thread()
- 连接队列的后台线程。此方法用于在调用q.close()方法后,等待所有队列项被消耗。默认情况下,此方法由不是q的原始创建者的所有进程调用。调用q.cancel_join_thread()方法可以禁止这种行为。
- q.get( [ block [ ,timeout ] ] )
2.4.2.2 代码实例
'''
multiprocessing模块支持进程间通信的两种主要形式:管道和队列
都是基于消息传递实现的,但是队列接口
'''
from multiprocessing import Queue
q=Queue(3)
#put ,get ,put_nowait,get_nowait,full,empty
q.put(3)
q.put(3)
q.put(3)
# q.put(3) # 如果队列已经满了,程序就会停在这里,等待数据被别人取走,再将数据放入队列。
# 如果队列中的数据一直不被取走,程序就会永远停在这里。
try:
q.put_nowait(3) # 可以使用put_nowait,如果队列满了不会阻塞,但是会因为队列满了而报错。
except: # 因此我们可以用一个try语句来处理这个错误。这样程序不会一直阻塞下去,但是会丢掉这个消息。
print('队列已经满了')
# 因此,我们再放入数据之前,可以先看一下队列的状态,如果已经满了,就不继续put了。
print(q.full()) #满了
print(q.get())
print(q.get())
print(q.get())
# print(q.get()) # 同put方法一样,如果队列已经空了,那么继续取就会出现阻塞。
try:
q.get_nowait(3) # 可以使用get_nowait,如果队列满了不会阻塞,但是会因为没取到值而报错。
except: # 因此我们可以用一个try语句来处理这个错误。这样程序不会一直阻塞下去。
print('队列已经空了')
print(q.empty()) #空了
- 子进程发送数据给父进程
import time
from multiprocessing import Process, Queue
def f(q):
q.put([time.asctime(), 'from Eva', 'hello']) #调用主函数中p进程传递过来的进程参数 put函数为向队列中添加一条数据。
if __name__ == '__main__':
q = Queue() #创建一个Queue对象
p = Process(target=f, args=(q,)) #创建一个进程
p.start()
print(q.get())
p.join()
- 子进程之间互相通信
from multiprocessing import Queue,Process
def produce(q):
q.put("hello")
def consume(q):
print(q.get())
if __name__ == "__main__":
q = Queue()
p = Process(target=produce, args=(q,))
p.start()
c = Process(target=consume, args=(q,))
c.start()
- 批量生产数据放入队列再批量获取结果
import os
import time
import multiprocessing
# 向queue中输入数据的函数
def inputQ(queue):
info = str(os.getpid()) + '(put):' + str(time.asctime())
queue.put(info)
# 向queue中输出数据的函数
def outputQ(queue):
info = queue.get()
print ('%s%s\033[32m%s\033[0m'%(str(os.getpid()), '(get):',info))
# Main
if __name__ == '__main__':
multiprocessing.freeze_support()
record1 = [] # store input processes
record2 = [] # store output processes
queue = multiprocessing.Queue(3)
# 输入进程
for i in range(10):
process = multiprocessing.Process(target=inputQ,args=(queue,))
process.start()
record1.append(process)
# 输出进程
for i in range(10):
process = multiprocessing.Process(target=outputQ,args=(queue,))
process.start()
record2.append(process)
for p in record1:
p.join()
for p in record2:
p.join()
2.4.2.3 生产者消费者模型
- 生产者消费者模式是通过一个容器来解决生产者和消费者的强耦合问题。生产者和消费者彼此之间不直接通讯,而通过阻塞队列来进行通讯,所以生产者生产完数据之后不用等待消费者处理,直接扔给阻塞队列,消费者不找生产者要数据,而是直接从阻塞队列里取,阻塞队列就相当于一个缓冲区,平衡了生产者和消费者的处理能力。
import time,random
from multiprocessing import Process,Queue
def producer(name,food,q):
for i in range(10):
time.sleep(random.randint(1,3))
f = "%s 生产了 %s %s" % (name,food,i)
print(f)
q.put(f)
def consumer(q,name):
while True:
food = q.get()
if food is None:
print("%s 获取到了一个空" % name)
break
print("\033[31m%s 消费了 %s \033[0m" % (name, food))
time.sleep(random.randint(1,3))
if __name__ == "__main__":
q = Queue(20)
p1 = Process(target=producer, args=("egg","包子",q))
p2 = Process(target=producer, args=("etc","泔水",q))
c1 = Process(target=consumer, args=(q,"xuanxuan"))
c2 = Process(target=consumer, args=(q,"xixi"))
p1.start()
p2.start()
c1.start()
c2.start()
p1.join()
p2.join()
q.put(None)
q.put(None)
- JoinableQueue([maxsize])
- 创建可连接的共享进程队列。这就像是一个Queue对象,但队列允许项目的使用者通知生产者项目已经被成功处理。通知进程是使用共享的信号和条件变量来实现的。
JoinableQueue的实例p除了与Queue对象相同的方法之外,还具有以下方法:
- q.task_done()
- 使用者使用此方法发出信号,表示q.get()返回的项目已经被处理。如果调用此方法的次数大于从队列中删除的项目数量,将引发ValueError异常。
- q.join()
- 生产者将使用此方法进行阻塞,直到队列中所有项目均被处理。阻塞将持续到为队列中的每个项目均调用q.task_done()方法为止。
下面的例子说明如何建立永远运行的进程,使用和处理队列上的项目。生产者将项目放入队列,并等待它们被处理。
import time,random
from multiprocessing import Process,JoinableQueue
def producer(name,food,q):
for i in range(10):
time.sleep(random.randint(1,3))
f = "%s 生产了 %s %s" % (name,food,i)
print(f)
q.put(f)
q.join() # 阻塞 直到一个队列中的所有数据 全部处理执行完毕
def consumer(q,name):
while True:
food = q.get()
print("\033[31m%s 消费了 %s \033[0m" % (name, food))
time.sleep(random.randint(1,3))
q.task_done()
if __name__ == "__main__":
q = JoinableQueue(20)
p1 = Process(target=producer, args=("egg","包子",q))
p2 = Process(target=producer, args=("etc","泔水",q))
c1 = Process(target=consumer, args=(q,"xuanxuan"))
c2 = Process(target=consumer, args=(q,"xixi"))
p1.start()
p2.start()
c1.daemon = True # 设置为守护进程 主进程中的代码执行完毕之后,子进程自动结束
c2.daemon = True
c1.start()
c2.start()
p1.join()
p2.join()
# 在消费者这一端:
# 每次获取一个数据
# 处理一个数据
# 发送一个记号:标志一个数据被处理成功
# 在生产者一端:
# 每一次生产一个数据
# 且每一次生产的数据都放在对列只中
# 在队列中刻上一个记号
# 当生产者全部生产完毕之后
# join 信号:已经停止生产数据了
# 且要等待之前被刻上的记号都被消费完
# 当数据都被处理完时,join阻塞结束
# consumer 中把所有的任务消费完
# producer 端 的 join 感知到,停止阻塞
# 所有的producer进程结束
# 主进程中的 p.join 结束
# 主进程中代码结束
# 守护进程(消费者的进程)结束
2.4.3 管道
-
创建管道的类:
- Pipe([duplex]):在进程之间创建一条管道,并返回元组(conn1,conn2),其中conn1,conn2表示管道两端的连接对象,强调一点:必须在产生Process对象之前产生管道
-
参数介绍:
- dumplex:默认管道是全双工的,如果将duplex射成False,conn1只能用于接收,conn2只能用于发送。
-
方法
- conn1.recv():接收conn2.send(obj)发送的对象。如果没有消息可接收,recv方法会一直阻塞。如果连接的另外一端已经关闭,那么recv方法会抛出EOFError。
- conn1.send(obj):通过连接发送对象。obj是与序列化兼容的任意对象
- conn1.close():关闭连接。如果conn1被垃圾回收,将自动调用此方法
- conn1.fileno():返回连接使用的整数文件描述符
- conn1.poll([timeout]):如果连接上的数据可用,返回True。timeout指定等待的最长时限。如果省略此参数,方法将立即返回结果。如果将timeout射成None,操作将无限期地等待数据到达。
- conn1.recv_bytes([maxlength]):接收c.send_bytes()方法发送的一条完整的字节消息。maxlength指定要接收的最大字节数。如果进入的消息,超过了这个最大值,将引发IOError异常,并且在连接上无法进行进一步读取。如果连接的另外一端已经关闭,再也不存在任何数据,将引发EOFError异常。
- conn.send_bytes(buffer [, offset [, size]]):通过连接发送字节数据缓冲区,buffer是支持缓冲区接口的任意对象,offset是缓冲区中的字节偏移量,而size是要发送字节数。结果数据以单条消息的形式发出,然后调用c.recv_bytes()函数进行接收
- conn1.recv_bytes_into(buffer [, offset]):接收一条完整的字节消息,并把它保存在buffer对象中,该对象支持可写入的缓冲区接口(即bytearray对象或类似的对象)。offset指定缓冲区中放置消息处的字节位移。返回值是收到的字节数。如果消息长度大于可用的缓冲区空间,将引发BufferTooShort异常。
-
pipe 初使用
def func(conn):
while True:
msg = conn.recv()
if msg is None:break
print(msg)
if __name__ == "__main__":
conn1,conn2 = Pipe()
Process(target=func,args=(conn1,)).start()
for i in range(20):
conn2.send("吃了么")
conn2.send(None)
- 引发EOFError
def func(conn1,conn2):
# conn2.close() # 不写close将不会引发EOFError
while True:
try:
msg = conn1.recv()
print(msg)
except EOFError:
conn1.close()
break
if __name__ == "__main__":
conn1,conn2 = Pipe()
Process(target=func,args=(conn1,conn2)).start()
conn1.close()
for i in range(20):
conn2.send("吃了么")
conn2.close()
- 管道实现生产者消费者模型
import time,random
from multiprocessing import Pipe,Process
def producer(con,pro,name,food):
con.close()
for i in range(8):
time.sleep(random.randint(1,3))
f = "%s 生产 %s %s " % (name,food,i)
print(f)
pro.send(f)
pro.close()
def consumer(con,pro,name):
pro.close()
while True:
try:
food = con.recv()
print("%s 吃了 %s" % (name,food))
time.sleep(random.randint(1,3))
except EOFError:
con.close()
break
if __name__ == "__main__":
con,pro = Pipe()
p = Process(target=producer,args=(con,pro,"egon","泔水"))
c1 = Process(target=consumer,args=(con,pro,"alex"))
c2 = Process(target=consumer,args=(con,pro,"jin"))
p.start()
c1.start()
c2.start()
con.close()
pro.close()
- 应该特别注意管道端点的正确管理问题。如果是生产者或消费者中都没有使用管道的某个端点,就应将它关闭。这也说明了为何在生产者中关闭了管道的输出端,在消费者中关闭管道的输入端。如果忘记执行这些步骤,程序可能在消费者中的recv()操作上挂起。管道是由操作系统进行引用计数的,必须在所有进程中关闭管道后才能生成EOFError异常。因此,在生产者中关闭管道不会有任何效果,除非消费者也关闭了相同的管道端点。
2.5 进程间的数据共享 —— multiprocess.Manager
- 进程间应该尽量避免通信,即便需要通信,也应该选择进程安全的工具来避免加锁带来的问题。以后尝试使用数据库来解决现在进程之间的数据共享问题。
from multiprocessing import Manager,Process
def main(dic):
dic["count"] -= 1
print(dic)
if __name__ == "__main__":
m = Manager()
dic=m.dict({"count":100})
print("主进程:", dic)
p_lst = []
p = Process(target=main, args=(dic,))
p.start()
p.join()
print("主进程:",dic)
from multiprocessing import Manager,Process,Lock
def main(dic,lock):
lock.acquire()
dic["count"] -= 1
lock.release()
if __name__ == "__main__":
m = Manager()
lock = Lock()
dic=m.dict({"count":100})
p_lst = []
for i in range(50):
p = Process(target=main,args=(dic,lock))
p.start()
p_lst.append(p)
for i in p_lst:i.join()
print("主进程:",dic)
2.6 进程池和multiprocess.Pool
2.6.1 进程池
- 进程池,只开指定数目的进程数(一般是CPU内核数+1)这样调度多个任务时,执行效率要比同时开多个进程执行效率要高很多(因为当同时开多个进程时,开进程是很占用资源的,时间都浪费在开进程上面了)
2.6.2 multiprocess.Pool模块
-
Pool([numprocess [,initializer [, initargs]]]):创建进程池
- numprocess:要创建的进程数,如果省略,将默认使用cpu_count()的值
- initializer:是每个工作进程启动时要执行的可调用对象,默认为None
- initargs:是要传给initializer的参数组
-
方法介绍
-
p.apply(func [, args [, kwargs]]):在一个池工作进程中执行func(*args,**kwargs),然后返回结果。
-
'''需要强调的是:此操作并不会在所有池工作进程中并执行func函数。如果要通过不同参数并发地执行func函数,必须从不同线程调用p.apply()函数或者使用p.apply_async()'''
-
p.apply_async(func [, args [, kwargs]]):在一个池工作进程中执行func(*args,**kwargs),然后返回结果。
-
'''此方法的结果是AsyncResult类的实例,callback是可调用对象,接收输入参数。当func的结果变为可用时,将理解传递给callback。callback禁止执行任何阻塞操作,否则将接收其他异步操作中的结果。'''
-
p.close():关闭进程池,防止进一步操作。如果所有操作持续挂起,它们将在工作进程终止前完成
-
P.jion():等待所有工作进程退出。此方法只能在close()或teminate()之后调用
-
方法apply_async()和map_async()的返回值是AsyncResul的实例obj。实例具有以下方法
-
obj.get():返回结果,如果有必要则等待结果到达。timeout是可选的。如果在指定时间内还没有到达,将引发一场。如果远程操作中引发了异常,它将在调用此方法时再次被引发。
-
obj.ready():如果调用完成,返回True
-
obj.successful():如果调用完成且没有引发异常,返回True,如果在结果就绪之前调用此方法,引发异常
-
obj.wait([timeout]):等待结果变为可用。
-
obj.terminate():立即终止所有工作进程,同时不执行任何清理或结束任何挂起工作。如果p被垃圾回收,将自动调用此函数
-
-
进程池和多进程效率对比
import time
from multiprocessing import Pool,Process
def func(n):
for i in range(10):
print(n + 1)
if __name__ == '__main__':
start = time.time()
pool = Pool(5)
pool.map(func,range(100))
t1 = time.time() - start
start = time.time()
p_lst = []
for i in range(100):
p = Process(target=func,args=(i,))
p_lst.append(p)
p.start()
for p in p_lst:p.join()
t2 = time.time() - start
print(t1,t2)
- 同步
import os,time
from multiprocessing import Pool
def work(n):
print('%s run' %os.getpid())
time.sleep(3)
return n**2
if __name__ == '__main__':
p=Pool(3) #进程池中从无到有创建三个进程,以后一直是这三个进程在执行任务
res_l=[]
for i in range(10):
res=p.apply(work,args=(i,)) # 同步调用,直到本次任务执行完毕拿到res,等待任务work执行的过程中可能有阻塞也可能没有阻塞
# 但不管该任务是否存在阻塞,同步调用都会在原地等着
print(res_l)
- 异步
import os
import time
import random
from multiprocessing import Pool
def work(n):
print('%s run' %os.getpid())
time.sleep(random.random())
return n**2
if __name__ == '__main__':
p=Pool(3) #进程池中从无到有创建三个进程,以后一直是这三个进程在执行任务
res_l=[]
for i in range(10):
res=p.apply_async(work,args=(i,)) # 异步运行,根据进程池中有的进程数,每次最多3个子进程在异步执行
# 返回结果之后,将结果放入列表,归还进程,之后再执行新的任务
# 需要注意的是,进程池中的三个进程不会同时开启或者同时结束
# 而是执行完一个就释放一个进程,这个进程就去接收新的任务。
res_l.append(res)
# 异步apply_async用法:如果使用异步提交的任务,主进程需要使用jion,等待进程池内任务都处理完,然后可以用get收集结果
# 否则,主进程结束,进程池可能还没来得及执行,也就跟着一起结束了
p.close()
p.join()
for res in res_l:
print(res.get()) #使用get来获取apply_aync的结果,如果是apply,则没有get方法,因为apply是同步执行,立刻获取结果,也根本无需get
- 进程池版socket并发聊天
# server
import socket
from multiprocessing import Pool
def func(conn):
conn.send(b"hello")
ret = conn.recv(1024).decode("utf-8")
print(ret)
conn.close()
if __name__ == '__main__':
p = Pool(5)
sk = socket.socket()
sk.bind(("127.0.0.1",8080))
sk.listen()
while True:
conn,addr = sk.accept()
p.apply_async(func, args=(conn,))
sk.close()
# client
import socket
sk = socket.socket()
sk.connect(("127.0.0.1",8080))
ret = sk.recv(1024).decode("utf-8")
print(ret)
msg = input(">>>").encode("utf-8")
sk.send(msg)
sk.close()
-
进程池的返回值
- p = Pool()
- p.map(funcname,iterable) 默认异步的执行任务,且自带close和join
- p.apply 同步调用
- p.apply_async 异步调用 和主进程完全异步 需要手动close和join
-
回调函数
- 回调函数的参数 接收自子进程执行函数的返回值,其实回调函数用在开多进程时,IO操作比较多的场合,如果对于有很多IO操作的程序,使用单进程,主进程就会一直等待,等待的时间就会很长,每一个IO都会等待,这样就会很浪费时间,但是如果在子进程中开多个子进程去执行IO操作,然后异步实现,那么主进程可以做自己的事,多个子进程(开进程池)同时处理多个任务,主进程等待的时间就明显少很多(比如原来处理五个任务,每个任务等待1秒,开单进程也就是在主进程中执行这些IO操作,就会等5秒,但是开进程池,交给5个进程来处理 就好像只等了1秒就陆陆续续的接收到各个进程的返回结果,所以效率就会高很多)而刚才提到的子进程去处理IO操作,得到的返回值就由回调函数来处理(而且回调函数是在主进程中执行的,也很容易理解,在主进程中开多个进程去执行任务,得到的返回值必须得给主进程来处理~)
-
apply
import time
from multiprocessing import Pool
def func(i):
time.sleep(0.5)
return i*i
if __name__ == '__main__':
p = Pool(5)
for i in range(10):
ret = p.apply(func,args=(i,)) # apply 的结果是func的返回值
print(ret)
- apply_async
import time
from multiprocessing import Pool
def func(i):
time.sleep(0.5)
return i*i
if __name__ == '__main__':
p = Pool(5)
ret_lst = []
for i in range(10):
ret = p.apply_async(func,args=(i,)) # apply_async
ret_lst.append(ret)
print(ret_lst)
# for ret in ret_lst:
# print(ret.get()) # 阻塞等待结果
- map
import time
from multiprocessing import Pool
def func(i):
time.sleep(0.5)
return i*i
if __name__ == '__main__':
p = Pool(5)
ret = p.map(func,range(10))
print(ret)
- 进程池的回调函数
import os
from multiprocessing import Pool
def func1(n):
print("in func1",os.getpid())
return n*n
def func2(nn):
print("in func2",os.getpid())
print(nn)
if __name__ == '__main__':
print("主进程",os.getpid())
p = Pool(5)
p.apply_async(func1,args=(10,),callback=func2)
p.close()
p.join()
- 回调函数在主进程中执行的
from multiprocessing import Pool
def func1(n):
return n+1
def func2(m):
print(m)
if __name__ == '__main__':
p = Pool(5)
for i in range(10,20):
p.apply_async(func1,args=(i,),callback=func2)
p.close()
p.join()
- 如果在主进程中等待进程池中所有任务都执行完毕后,再统一处理结果,则无需回调函数
from multiprocessing import Pool
import time,random,os
def work(n):
time.sleep(1)
return n**2
if __name__ == '__main__':
p=Pool()
res_l=[]
for i in range(10):
res=p.apply_async(work,args=(i,))
res_l.append(res)
p.close()
p.join() #等待进程池中所有进程执行完毕
nums=[]
for res in res_l:
nums.append(res.get()) #拿到所有结果
print(nums) #主进程拿到所有的处理结果,可以在主进程中进行统一进行处理
2.6.3 爬虫实例
import re
from urllib.request import urlopen,Request
from multiprocessing import Pool
def get_page(url,pattern):
response=urlopen(url).read().decode("utf-8")
return pattern,response
def parse_page(info):
pattern,page_content=info
res=re.findall(pattern,page_content)
for item in res:
dic={
'index':item[0].strip(),
'title':item[1].strip(),
'actor':item[2].strip(),
'time':item[3].strip(),
}
print(dic)
if __name__ == '__main__':
regex = r'<dd>.*?<.*?class="board-index.*?>(\d+)</i>.*?title="(.*?)".*?class="movie-item-info".*?<p class="star">(.*?)</p>.*?<p class="releasetime">(.*?)</p>'
pattern1=re.compile(regex,re.S)
# print(pattern1)
url_dic={
'http://maoyan.com/board/7':pattern1,
}
ua_headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/66.0.3359.139 Safari/537.36"}
p=Pool(5)
res_l=[]
for url,pattern in url_dic.items():
url = Request(url,headers = ua_headers)
res=p.apply_async(get_page,args=(url,pattern),callback=parse_page)
res_l.append(res)
for i in res_l:
i.get()
2.6.4 进程池小结
-
进程池
- CPU 个数 +1
- ret = map(func,iterable)
- 异步 自带close和join
- 返回值:所有结果的[]列表
- apply
- 同步的: 只要当func执行完之后,才会继续向下执行其他代码
- ret = apply(func,args())
- 返回值:就是func的return的值
- apply_async
- 异步的:当func被注册进入一个进程之后,程序就向下执行
- apply_async(func,args=())
- 返回值:apply_async 返回的对象obj
- 为了用户从中获取func的返回值 obj.get()
- get 会阻塞直到对应的func执行完毕拿到结果
- 使用 apply_async给进程池分配任务
- 需要先close后join来保持多进程和主进程代码的同步性
-
进程池的其他实现方式:https://docs.python.org/dev/library/concurrent.futures.html
3,案例
3.1 使用进池文件夹copy,显示当前copy进度
import os
import shutil
import multiprocessing
def copy_file(q, file_name, old_folder_name, new_folder_name):
"""完成文件的复制"""
# print("====》模拟copy文件:从%s ---> %s 文件名是:%s" % (old_folder_name, new_folder_name, file_name))
with open(old_folder_name + "/" + file_name, "rb") as old :
content = old.read()
with open(new_folder_name + "/" + file_name, "wb") as new :
new.write(content)
# 如果拷贝完了文件,那么就向队列写入一个消息,表示已经完成
q.put(file_name)
def main():
# 1,获取用户要copy的文件夹的名字
old_folder_name = input("请输入要copy的文件夹的名字:")
# 2,创建一个新的文件夹
try:
new_folder_name = old_folder_name + "_bak"
if os.path.exists(new_folder_name):
# 删除 new_folder_name 文件夹
shutil.rmtree(new_folder_name)
os.mkdir(new_folder_name)
else:
os.mkdir(new_folder_name)
except:
pass
# 3,获取文件夹的所有的待copy的文件名字 listdir()
file_names = os.listdir(old_folder_name)
#print(file_names)
# 4,创建进程池
po = multiprocessing.Pool(5)
# 5,创建一个队列
q = multiprocessing.Manager().Queue()
# 5,向进程池中添加 copy 文件的任务
for file_name in file_names:
po.apply_async(copy_file, args=(q, file_name,old_folder_name, new_folder_name))
po.close()
po.join()
# 测一下所有文件的个数
all_file_num = len(file_names)
copy_ok_num = 0
while True:
file_name = q.get()
# print("已经完成copy:%s" % file_name)
copy_ok_num += 1
print("\r拷贝的进度为:%.2f %%" % (copy_ok_num * 100 / all_file_num),end='')
if copy_ok_num >= all_file_num:
break
print()
if __name__ == "__main__":
main()