丢弃法

一、前言

在深度学习里面,除了用权重衰退来应对过拟合外,还用丢弃法(dropout)来应对过拟合

 

二、概念

在现代神经网络中,我们所指的丢弃法,通常是对输入层或者隐含层进行的操作:

1、以丢失概率P随机丢掉该层的部分隐藏单元

2、丢带的隐藏单元会被清零

3、没有丢掉的隐藏单元会除以1-p做拉伸

 

三、原理

 

 

 

1、对与上图的单隐藏层感知机,其输入层节点数为4,隐藏层节点数为5,所以隐藏层节点hi(i=1,2,3,4,5)的输出值计算方法为:ϕ表示激活函数

 

 

2、当我们对隐藏层使用丢弃法时,这一层的节点有一定的概率被丢弃,即其输出值被置0. 我们假设丢弃的概率为p,那么hi会有p的概率被置0,有1-p的概率会除以1-p做拉伸

 

 

即使用丢弃法不改变隐藏层节点的期望

3、可以发现以P的概率删除了h2和h5后,输出的计算不再依赖于h2和h5。并且它们在各自的梯度在执行反向传播时也会消失,这样输出层的计算就不会过度依赖与和h1...h5中的任何一个元素

4、在训练时使用dropout。在测试时,为了取得确定性的结果,不使用丢弃法

posted @   小秦同学在上学  阅读(255)  评论(0编辑  收藏  举报
编辑推荐:
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
阅读排行:
· winform 绘制太阳,地球,月球 运作规律
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)
点击右上角即可分享
微信分享提示