6.多线程爬虫

多线程爬虫

有些时候,比如下载图片,因为下载图片是一个耗时的操作。如果采用之前那种同步的方式下载。那效率肯会特别慢。这时候我们就可以考虑使用多线程的方式来下载图片。

多线程介绍:

多线程是为了同步完成多项任务,通过提高资源使用效率来提高系统的效率。线程是在同一时间需要完成多项任务的时候实现的。
最简单的比喻多线程就像火车的每一节车厢,而进程则是火车。车厢离开火车是无法跑动的,同理火车也可以有多节车厢。多线程的出现就是为了提高效率。同时它的出现也带来了一些问题。更多介绍请参考:https://baike.baidu.com/item/多线程/1190404?fr=aladdin

threading模块介绍:

单线程

import time

def coding():
    for x in range(3):
        print('%s正在写代码' % x)
        time.sleep(1)

def drawing():
    for x in range(3):
        print('%s正在画图' % x)
        time.sleep(1)


def single_thread():
    coding()
    drawing()

if __name__ == '__main__':
    single_thread()

threading模块是python中专门提供用来做多线程编程的模块。threading模块中最常用的类是Thread。以下看一个简单的多线程程序:

多线程

import threading
import time

def coding():
    for x in range(3):
        print('%s正在写代码' % x)
        time.sleep(1)

def drawing():
    for x in range(3):
        print('%s正在画图' % x)
        time.sleep(1)


def multi_thread():
    t1 = threading.Thread(target=coding)
    t2 = threading.Thread(target=drawing)

    t1.start()
    t2.start()

if __name__ == '__main__':
    multi_thread()

查看线程数:

使用threading.enumerate()函数便可以看到当前线程的数量。

查看当前线程的名字:

使用threading.current_thread()可以看到当前线程的信息。

继承自threading.Thread类:

为了让线程代码更好的封装。可以使用threading模块下的Thread类,继承自这个类,然后实现run方法,线程就会自动运行run方法中的代码。示例代码如下:

import threading
import time

class CodingThread(threading.Thread):
    def run(self):
        for x in range(3):
            print('%s正在写代码' % threading.current_thread())
            time.sleep(1)

class DrawingThread(threading.Thread):
    def run(self):
        for x in range(3):
            print('%s正在画图' % threading.current_thread())
            time.sleep(1)

def multi_thread():
    t1 = CodingThread()
    t2 = DrawingThread()

    t1.start()
    t2.start()

if __name__ == '__main__':
    multi_thread()

多线程共享全局变量的问题:

多线程都是在同一个进程中运行的。因此在进程中的全局变量所有线程都是可共享的。这就造成了一个问题,因为线程执行的顺序是无序的。有可能会造成数据错误。比如以下代码:

import threading

tickets = 0

def get_ticket():
    global tickets
    for x in range(1000000):
        tickets += 1
    print('tickets:%d'%tickets)

def main():
    for x in range(2):
        t = threading.Thread(target=get_ticket)
        t.start()

if __name__ == '__main__':
    main()

以上结果正常来讲应该是6,但是因为多线程运行的不确定性。因此最后的结果可能是随机的。

锁机制:

为了解决以上使用共享全局变量的问题。threading提供了一个Lock类,这个类可以在某个线程访问某个变量的时候加锁,其他线程此时就不能进来,直到当前线程处理完后,把锁释放了,其他线程才能进来处理。示例代码如下:

import threading

VALUE = 0

gLock = threading.Lock()

def add_value():
    global VALUE
    gLock.acquire()
    for x in range(1000000):
        VALUE += 1
    gLock.release()
    print('value:%d'%VALUE)

def main():
    for x in range(2):
        t = threading.Thread(target=add_value)
        t.start()

if __name__ == '__main__':
    main()

Lock版本生产者和消费者模式:

生产者和消费者模式是多线程开发中经常见到的一种模式。生产者的线程专门用来生产一些数据,然后存放到一个中间的变量中。消费者再从这个中间的变量中取出数据进行消费。但是因为要使用中间变量,中间变量经常是一些全局变量,因此需要使用锁来保证数据完整性。以下是使用threading.Lock锁实现的“生产者与消费者模式”的一个例子:

import threading
import random
import time

gMoney = 1000
gLock = threading.Lock()
# 记录生产者生产的次数,达到10次就不再生产
gTimes = 0

class Producer(threading.Thread):
    def run(self):
        global gMoney
        global gLock
        global gTimes
        while True:
            money = random.randint(100, 1000)
            gLock.acquire()
            # 如果已经达到10次了,就不再生产了
            if gTimes >= 10:
                gLock.release()
                break
            gMoney += money
            print('%s当前存入%s元钱,剩余%s元钱' % (threading.current_thread(), money, gMoney))
            gTimes += 1
            time.sleep(0.5)
            gLock.release()

class Consumer(threading.Thread):
    def run(self):
        global gMoney
        global gLock
        global gTimes
        while True:
            money = random.randint(100, 500)
            gLock.acquire()
            if gMoney > money:
                gMoney -= money
                print('%s当前取出%s元钱,剩余%s元钱' % (threading.current_thread(), money, gMoney))
                time.sleep(0.5)
            else:
                # 如果钱不够了,有可能是已经超过了次数,这时候就判断一下
                if gTimes >= 10:
                    gLock.release()
                    break
                print("%s当前想取%s元钱,剩余%s元钱,不足!" % (threading.current_thread(),money,gMoney))
            gLock.release()

def main():
    for x in range(5):
        Consumer(name='消费者线程%d'%x).start()

    for x in range(5):
        Producer(name='生产者线程%d'%x).start()

if __name__ == '__main__':
    main()

Condition版的生产者与消费者模式:

Lock版本的生产者与消费者模式可以正常的运行。但是存在一个不足,在消费者中,总是通过while True死循环并且上锁的方式去判断钱够不够。上锁是一个很耗费CPU资源的行为。因此这种方式不是最好的。还有一种更好的方式便是使用threading.Condition来实现。threading.Condition可以在没有数据的时候处于阻塞等待状态。一旦有合适的数据了,还可以使用notify相关的函数来通知其他处于等待状态的线程。这样就可以不用做一些无用的上锁和解锁的操作。可以提高程序的性能。首先对threading.Condition相关的函数做个介绍,threading.Condition类似threading.Lock,可以在修改全局数据的时候进行上锁,也可以在修改完毕后进行解锁。以下将一些常用的函数做个简单的介绍:

  1. acquire:上锁。
  2. release:解锁。
  3. wait:将当前线程处于等待状态,并且会释放锁。可以被其他线程使用notifynotify_all函数唤醒。被唤醒后会继续等待上锁,上锁后继续执行下面的代码。
  4. notify:通知某个正在等待的线程,默认是第1个等待的线程。
  5. notify_all:通知所有正在等待的线程。notifynotify_all不会释放锁。并且需要在release之前调用。

Condition版的生产者与消费者模式代码如下:

import threading
import random
import time

gMoney = 1000
gCondition = threading.Condition()
gTimes = 0
gTotalTimes = 5

class Producer(threading.Thread):
    def run(self):
        global gMoney
        global gCondition
        global gTimes
        while True:
            money = random.randint(100, 1000)
            gCondition.acquire()
            if gTimes >= gTotalTimes:
                gCondition.release()
                print('当前生产者总共生产了%s次'%gTimes)
                break
            gMoney += money
            print('%s当前存入%s元钱,剩余%s元钱' % (threading.current_thread(), money, gMoney))
            gTimes += 1
            time.sleep(0.5)
            gCondition.notify_all()
            gCondition.release()

class Consumer(threading.Thread):
    def run(self):
        global gMoney
        global gCondition
        while True:
            money = random.randint(100, 500)
            gCondition.acquire()
            # 这里要给个while循环判断,因为等轮到这个线程的时候
            # 条件有可能又不满足了
            while gMoney < money:
                if gTimes >= gTotalTimes:
                    gCondition.release()
                    return
                print('%s准备取%s元钱,剩余%s元钱,不足!'%(threading.current_thread(),money,gMoney))
                gCondition.wait()
            gMoney -= money
            print('%s当前取出%s元钱,剩余%s元钱' % (threading.current_thread(), money, gMoney))
            time.sleep(0.5)
            gCondition.release()

def main():
    for x in range(5):
        Consumer(name='消费者线程%d'%x).start()

    for x in range(2):
        Producer(name='生产者线程%d'%x).start()

if __name__ == '__main__':
    main()

Queue线程安全队列:

在线程中,访问一些全局变量,加锁是一个经常的过程。如果你是想把一些数据存储到某个队列中,那么Python内置了一个线程安全的模块叫做queue模块。Python中的queue模块中提供了同步的、线程安全的队列类,包括FIFO(先进先出)队列Queue,LIFO(后入先出)队列LifoQueue。这些队列都实现了锁原语(可以理解为原子操作,即要么不做,要么都做完),能够在多线程中直接使用。可以使用队列来实现线程间的同步。相关的函数如下:

  1. 初始化Queue(maxsize):创建一个先进先出的队列。
  2. qsize():返回队列的大小。
  3. empty():判断队列是否为空。
  4. full():判断队列是否满了。
  5. get():从队列中取最后一个数据。
  6. put():将一个数据放到队列中。

使用生产者与消费者模式多线程下载表情包:

import threading
import requests
from lxml import etree
from urllib import request
import os
import re
from queue import Queue

class Producer(threading.Thread):
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/62.0.3202.94 Safari/537.36'
    }
    def __init__(self,page_queue,img_queue,*args,**kwargs):
        super(Producer, self).__init__(*args,**kwargs)
        self.page_queue = page_queue
        self.img_queue = img_queue


    def run(self):
        while True:
            if self.page_queue.empty():
                break
            url = self.page_queue.get()
            self.parse_page(url)

    def parse_page(self,url):
        response = requests.get(url,headers=self.headers)
        text = response.text
        html = etree.HTML(text)
        imgs = html.xpath("//div[@class='page-content text-center']//a//img")
        for img in imgs:
            if img.get('class') == 'gif':
                continue
            img_url = img.xpath(".//@data-original")[0]
            suffix = os.path.splitext(img_url)[1]
            alt = img.xpath(".//@alt")[0]
            alt = re.sub(r'[,。??,/\\·]','',alt)
            img_name = alt + suffix
            self.img_queue.put((img_url,img_name))

class Consumer(threading.Thread):
    def __init__(self,page_queue,img_queue,*args,**kwargs):
        super(Consumer, self).__init__(*args,**kwargs)
        self.page_queue = page_queue
        self.img_queue = img_queue

    def run(self):
        while True:
            if self.img_queue.empty():
                if self.page_queue.empty():
                    return
            img = self.img_queue.get(block=True)
            url,filename = img
            request.urlretrieve(url,'images/'+filename)
            print(filename+'  下载完成!')

def main():
    page_queue = Queue(100)
    img_queue = Queue(500)
    for x in range(1,101):
        url = "http://www.doutula.com/photo/list/?page=%d" % x
        page_queue.put(url)

    for x in range(5):
        t = Producer(page_queue,img_queue)
        t.start()

    for x in range(5):
        t = Consumer(page_queue,img_queue)
        t.start()

if __name__ == '__main__':
    main()

GIL全局解释器锁:

Python自带的解释器是CPythonCPython解释器的多线程实际上是一个假的多线程(在多核CPU中,只能利用一核,不能利用多核)。同一时刻只有一个线程在执行,为了保证同一时刻只有一个线程在执行,在CPython解释器中有一个东西叫做GIL(Global Intepreter Lock),叫做全局解释器锁。这个解释器锁是有必要的。因为CPython解释器的内存管理不是线程安全的。当然除了CPython解释器,还有其他的解释器,有些解释器是没有GIL锁的,见下面:

  1. Jython:用Java实现的Python解释器。不存在GIL锁。更多详情请见:https://zh.wikipedia.org/wiki/Jython
  2. IronPython:用.net实现的Python解释器。不存在GIL锁。更多详情请见:https://zh.wikipedia.org/wiki/IronPython
  3. PyPy:用Python实现的Python解释器。存在GIL锁。更多详情请见:https://zh.wikipedia.org/wiki/PyPy
    GIL虽然是一个假的多线程。但是在处理一些IO操作(比如文件读写和网络请求)还是可以在很大程度上提高效率的。在IO操作上建议使用多线程提高效率。在一些CPU计算操作上不建议使用多线程,而建议使用多进程。

多线程下载百思不得姐段子作业:

import requests
from lxml import etree
import threading
from queue import Queue
import csv


class BSSpider(threading.Thread):
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/62.0.3202.94 Safari/537.36'
    }
    def __init__(self,page_queue,joke_queue,*args,**kwargs):
        super(BSSpider, self).__init__(*args,**kwargs)
        self.base_domain = 'http://www.budejie.com'
        self.page_queue = page_queue
        self.joke_queue = joke_queue

    def run(self):
        while True:
            if self.page_queue.empty():
                break
            url = self.page_queue.get()
            response = requests.get(url, headers=self.headers)
            text = response.text
            html = etree.HTML(text)
            descs = html.xpath("//div[@class='j-r-list-c-desc']")
            for desc in descs:
                jokes = desc.xpath(".//text()")
                joke = "\n".join(jokes).strip()
                link = self.base_domain+desc.xpath(".//a/@href")[0]
                self.joke_queue.put((joke,link))
            print('='*30+"第%s页下载完成!"%url.split('/')[-1]+"="*30)

class BSWriter(threading.Thread):
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/62.0.3202.94 Safari/537.36'
    }

    def __init__(self, joke_queue, writer,gLock, *args, **kwargs):
        super(BSWriter, self).__init__(*args, **kwargs)
        self.joke_queue = joke_queue
        self.writer = writer
        self.lock = gLock

    def run(self):
        while True:
            try:
                joke_info = self.joke_queue.get(timeout=40)
                joke,link = joke_info
                self.lock.acquire()
                self.writer.writerow((joke,link))
                self.lock.release()
                print('保存一条')
            except:
                break

def main():
    page_queue = Queue(10)
    joke_queue = Queue(500)
    gLock = threading.Lock()
    fp = open('bsbdj.csv', 'a',newline='', encoding='utf-8')
    writer = csv.writer(fp)
    writer.writerow(('content', 'link'))

    for x in range(1,11):
        url = 'http://www.budejie.com/text/%d' % x
        page_queue.put(url)

    for x in range(5):
        t = BSSpider(page_queue,joke_queue)
        t.start()

    for x in range(5):
        t = BSWriter(joke_queue,writer,gLock)
        t.start()

if __name__ == '__main__':
    main()

 

动态网页数据抓取

什么是AJAX:

AJAX(Asynchronouse JavaScript And XML)异步JavaScript和XML。过在后台与服务器进行少量数据交换,Ajax 可以使网页实现异步更新。这意味着可以在不重新加载整个网页的情况下,对网页的某部分进行更新。传统的网页(不使用Ajax)如果需要更新内容,必须重载整个网页页面。因为传统的在传输数据格式方面,使用的是XML语法。因此叫做AJAX,其实现在数据交互基本上都是使用JSON。使用AJAX加载的数据,即使使用了JS,将数据渲染到了浏览器中,在右键->查看网页源代码还是不能看到通过ajax加载的数据,只能看到使用这个url加载的html代码。

获取ajax数据的方式:

  1. 直接分析ajax调用的接口。然后通过代码请求这个接口。
  2. 使用Selenium+chromedriver模拟浏览器行为获取数据。
方式优点缺点
分析接口 直接可以请求到数据。不需要做一些解析工作。代码量少,性能高。 分析接口比较复杂,特别是一些通过js混淆的接口,要有一定的js功底。容易被发现是爬虫。
selenium 直接模拟浏览器的行为。浏览器能请求到的,使用selenium也能请求到。爬虫更稳定。 代码量多。性能低。

Selenium+chromedriver获取动态数据:

Selenium相当于是一个机器人。可以模拟人类在浏览器上的一些行为,自动处理浏览器上的一些行为,比如点击,填充数据,删除cookie等。chromedriver是一个驱动Chrome浏览器的驱动程序,使用他才可以驱动浏览器。当然针对不同的浏览器有不同的driver。以下列出了不同浏览器及其对应的driver:

  1. Chrome:http://chromedriver.storage.googleapis.com/index.html
  2. Firefox:https://github.com/mozilla/geckodriver/releases
  3. Edge:https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
  4. Safari:https://webkit.org/blog/6900/webdriver-support-in-safari-10/

安装Selenium和chromedriver:

  1. 安装SeleniumSelenium有很多语言的版本,有java、ruby、python等。我们下载python版本的就可以了。
     pip install selenium
    
  2. 安装chromedriver:下载完成后,放到不需要权限的纯英文目录下就可以了。

快速入门:

现在以一个简单的获取百度首页的例子来讲下Seleniumchromedriver如何快速入门:

from selenium import webdriver

# chromedriver的绝对路径
driver_path = r'D:\ProgramApp\chromedriver\chromedriver.exe'

# 初始化一个driver,并且指定chromedriver的路径
driver = webdriver.Chrome(executable_path=driver_path)
# 请求网页
driver.get("https://www.baidu.com/")
# 通过page_source获取网页源代码
print(driver.page_source)

selenium常用操作:

更多教程请参考:http://selenium-python.readthedocs.io/installation.html#introduction

关闭页面:

  1. driver.close():关闭当前页面。
  2. driver.quit():退出整个浏览器。

定位元素:

  1. find_element_by_id:根据id来查找某个元素。等价于:
     submitTag = driver.find_element_by_id('su')
     submitTag1 = driver.find_element(By.ID,'su')
    
  2. find_element_by_class_name:根据类名查找元素。 等价于:
     submitTag = driver.find_element_by_class_name('su')
     submitTag1 = driver.find_element(By.CLASS_NAME,'su')
    
  3. find_element_by_name:根据name属性的值来查找元素。等价于:
     submitTag = driver.find_element_by_name('email')
     submitTag1 = driver.find_element(By.NAME,'email')
    
  4. find_element_by_tag_name:根据标签名来查找元素。等价于:
     submitTag = driver.find_element_by_tag_name('div')
     submitTag1 = driver.find_element(By.TAG_NAME,'div')
    
  5. find_element_by_xpath:根据xpath语法来获取元素。等价于:
     submitTag = driver.find_element_by_xpath('//div')
     submitTag1 = driver.find_element(By.XPATH,'//div')
    
  6. find_element_by_css_selector:根据css选择器选择元素。等价于:

     submitTag = driver.find_element_by_css_selector('//div')
     submitTag1 = driver.find_element(By.CSS_SELECTOR,'//div')
    

    要注意,find_element是获取第一个满足条件的元素。find_elements是获取所有满足条件的元素。

操作表单元素:

  1. 操作输入框:分为两步。第一步:找到这个元素。第二步:使用send_keys(value),将数据填充进去。示例代码如下:

     inputTag = driver.find_element_by_id('kw')
     inputTag.send_keys('python')
    

    使用clear方法可以清除输入框中的内容。示例代码如下:

     inputTag.clear()
    
  2. 操作checkbox:因为要选中checkbox标签,在网页中是通过鼠标点击的。因此想要选中checkbox标签,那么先选中这个标签,然后执行click事件。示例代码如下:

     rememberTag = driver.find_element_by_name("rememberMe")
     rememberTag.click()
    
  3. 选择select:select元素不能直接点击。因为点击后还需要选中元素。这时候selenium就专门为select标签提供了一个类selenium.webdriver.support.ui.Select。将获取到的元素当成参数传到这个类中,创建这个对象。以后就可以使用这个对象进行选择了。示例代码如下:

     from selenium.webdriver.support.ui import Select
     # 选中这个标签,然后使用Select创建对象
     selectTag = Select(driver.find_element_by_name("jumpMenu"))
     # 根据索引选择
     selectTag.select_by_index(1)
     # 根据值选择
     selectTag.select_by_value("http://www.95yueba.com")
     # 根据可视的文本选择
     selectTag.select_by_visible_text("95秀客户端")
     # 取消选中所有选项
     selectTag.deselect_all()
    
  4. 操作按钮:操作按钮有很多种方式。比如单击、右击、双击等。这里讲一个最常用的。就是点击。直接调用click函数就可以了。示例代码如下:

     inputTag = driver.find_element_by_id('su')
     inputTag.click()
    

行为链:

有时候在页面中的操作可能要有很多步,那么这时候可以使用鼠标行为链类ActionChains来完成。比如现在要将鼠标移动到某个元素上并执行点击事件。那么示例代码如下:

inputTag = driver.find_element_by_id('kw')
submitTag = driver.find_element_by_id('su')

actions = ActionChains(driver)
actions.move_to_element(inputTag)
actions.send_keys_to_element(inputTag,'python')
actions.move_to_element(submitTag)
actions.click(submitTag)
actions.perform()

还有更多的鼠标相关的操作。

Cookie操作:

  1. 获取所有的cookie
     for cookie in driver.get_cookies():
         print(cookie)
    
  2. 根据cookie的key获取value:
     value = driver.get_cookie(key)
    
  3. 删除所有的cookie:
     driver.delete_all_cookies()
    
  4. 删除某个cookie
     driver.delete_cookie(key)
    

页面等待:

现在的网页越来越多采用了 Ajax 技术,这样程序便不能确定何时某个元素完全加载出来了。如果实际页面等待时间过长导致某个dom元素还没出来,但是你的代码直接使用了这个WebElement,那么就会抛出NullPointer的异常。为了解决这个问题。所以 Selenium 提供了两种等待方式:一种是隐式等待、一种是显式等待。

  1. 隐式等待:调用driver.implicitly_wait。那么在获取不可用的元素之前,会先等待10秒中的时间。示例代码如下:

    driver = webdriver.Chrome(executable_path=driver_path)
    driver.implicitly_wait(10)
    # 请求网页
    driver.get("https://www.douban.com/")
    
  2. 显示等待:显示等待是表明某个条件成立后才执行获取元素的操作。也可以在等待的时候指定一个最大的时间,如果超过这个时间那么就抛出一个异常。显示等待应该使用selenium.webdriver.support.excepted_conditions期望的条件和selenium.webdriver.support.ui.WebDriverWait来配合完成。示例代码如下:

     from selenium import webdriver
     from selenium.webdriver.common.by import By
     from selenium.webdriver.support.ui import WebDriverWait
     from selenium.webdriver.support import expected_conditions as EC
    
     driver = webdriver.Firefox()
     driver.get("http://somedomain/url_that_delays_loading")
     try:
         element = WebDriverWait(driver, 10).until(
             EC.presence_of_element_located((By.ID, "myDynamicElement"))
         )
     finally:
         driver.quit()
  3. 一些其他的等待条件:

    • presence_of_element_located:某个元素已经加载完毕了。
    • presence_of_all_emement_located:网页中所有满足条件的元素都加载完毕了。
    • element_to_be_cliable:某个元素是可以点击了。

      更多条件请参考:http://selenium-python.readthedocs.io/waits.html

切换页面:

有时候窗口中有很多子tab页面。这时候肯定是需要进行切换的。selenium提供了一个叫做switch_to_window来进行切换,具体切换到哪个页面,可以从driver.window_handles中找到。示例代码如下:

# 打开一个新的页面
self.driver.execute_script("window.open('"+url+"')")
# 切换到这个新的页面中
self.driver.switch_to_window(self.driver.window_handles[1])

设置代理ip:

有时候频繁爬取一些网页。服务器发现你是爬虫后会封掉你的ip地址。这时候我们可以更改代理ip。更改代理ip,不同的浏览器有不同的实现方式。这里以Chrome浏览器为例来讲解:

from selenium import webdriver

options = webdriver.ChromeOptions()
options.add_argument("--proxy-server=http://110.73.2.248:8123")
driver_path = r"D:\ProgramApp\chromedriver\chromedriver.exe"
driver = webdriver.Chrome(executable_path=driver_path,chrome_options=options)

driver.get('http://httpbin.org/ip')

WebElement元素:

from selenium.webdriver.remote.webelement import WebElement类是每个获取出来的元素的所属类。
有一些常用的属性:

    1. get_attribute:这个标签的某个属性的值。
    2. screentshot:获取当前页面的截图。这个方法只能在driver上使用。
      driver的对象类,也是继承自WebElement
      更多请阅读相关源代码。
 
posted @ 2018-08-11 11:17  等待の喵  阅读(155)  评论(0编辑  收藏  举报