pytorch的杂七杂八
数据
contiguous()
博客
相当于深拷贝
scatter_()
博客
可以利用这个功能将pytorch 中mini batch中的返回的label转为one-hot类型的label
label = torch.tensor([1,3,3,5])
one_hot_label = torch.zeros(mini_batch, out_planes).scatter_(1,label.unsqueeze(1),1)
print(one_hot_label)
tensor([[0., 1., 0., 0., 0., 0.],
[0., 0., 0., 1., 0., 0.],
[0., 0., 0., 1., 0., 0.],
unsqueeze()
label = torch.tensor([1,3,3,5])
print(label.unsqueeze(1))
tensor([[1],
[3],
[3],
[5]])
expand(size) expand_as(other)
>>> x = torch.tensor([[1], [2], [3]])
>>> x.size()
torch.Size([3, 1])
>>> x.expand(3, 4)
tensor([[ 1, 1, 1, 1],
[ 2, 2, 2, 2],
[ 3, 3, 3, 3]])
>>> x.expand(-1, 4) # -1 means not changing the size of that dimension
tensor([[ 1, 1, 1, 1],
[ 2, 2, 2, 2],
[ 3, 3, 3, 3]])
autograd.grad()
narrow()
>>> x = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> torch.narrow(x, 0, 0, 2)
tensor([[ 1, 2, 3],
[ 4, 5, 6]])
>>> torch.narrow(x, 1, 1, 2)
tensor([[ 2, 3],
[ 5, 6],
[ 8, 9]])