03 2024 档案
摘要:这里分享同济大学 `Haofen Wang`的关于检索增强生成的报告:《Retrieval-Augmented Generation (RAG): Paradigms, Technologies, and Trends》,全面了解RAG 范式、技术和趋势。
阅读全文
摘要:语义索引(可通俗理解为向量索引)技术是搜索引擎、推荐系统、广告系统在召回阶段的核心技术之一。本文介绍In-batch negatives方法训练embedding模型,以及通过mteb测试模型recall效果。
阅读全文
摘要:Agent是大模型的重要应用方向,而ReACT是学术界提出的重要方法,本文介绍ReACT论文,然后通过llama_index ReActAgent来分析ReACT的执行过程
阅读全文
摘要:我们从模型量化,模型推理,以及开发平台等三个层面来梳理分析LLM的推理和应用
阅读全文
摘要:RAG 是当前使用LLM的标准方法,大多数现有方法仅从检索语料库中检索短的连续块,限制了对整个文档上下文的整体理解。
最近,一种名为 RAPTOR (Recursive Abstractive Processing for Tree-Organized Retrieval)方法提出来, 可以让RAG的准确率提高 20%
阅读全文