分析 Vue 3.0 响应式原理
引言
前几天写了一篇关于Vue 3.0 reactive API 源码实现的文章,发现大家还是蛮有兴趣对于源码这一块的。阅读的人数虽然不多,但是 200 多次阅读,还是阔以的!并且,在当时阿里的一位前辈也指出了文章存在的不足,就是没有分析 Proxy 是如何配合 Effect 实现响应式的原理,即依赖收集和派发更新的过程。
所以,这次我们就来彻底了解一下,vue 3.0 依赖收集和派发更新的整个过程。
值得一提的是在 vue 3.0 中没有了watcher 的概念,取而代之的是 effect ,所以接下来会接触很多和 effect 相关的函数
一、开始前准备
在文章的开始前,我们先准备这样一个简单的 case,以便后续分析具体逻辑:
main.js 项目入口
import { createApp } from 'vue'
import App from './App.vue'
createApp(App).mount('#app')
App.vue 组件
<template>
<button @click="inc">Clicked {{ count }} times.</button>
</template>
<script>
import { reactive, toRefs } from 'vue'
export default {
setup() {
const state = reactive({
count: 0,
})
const inc = () => {
state.count++
}
return {
inc,
...toRefs(state)
}
}
}
</script>
二、安装渲染 Effect
首先,我们大家都知道在通常情况下,我们的页面会使用当前实例的一些属性、计算属性、方法等等。所以,在组件渲染的过程就会发生依赖收集的这个过程。也因此,我们先从组件的渲染过程开始分析。
在组件的渲染过程中,会安装(创建)一个渲染 reactive effect,即 Vue 3.0 在编译 template 的时候,对是否有订阅数据做出相应的判断,创建对应的渲染 reactive effect,它的定义如下:
const setupRenderEffect = (instance, initialVNode, container, anchor, parentSuspense, isSVG) => {
// create reactive effect for rendering
instance.update = effect(function componentEffect() {
....
instance.isMounted = true;
}
else {
...
}
}, (process.env.NODE_ENV !== 'production') ? createDevEffectOptions(instance) : prodEffectOptions);
};
我们来大致分析一下 setupRenderEffect()。它传入几个参数,它们分别为:
- instance 当前 vm 实例
- initialVNode 可以是组件 VNode 或者普通 VNode
- container 挂载的模板,例如 div#app 对应的节点
- anchor, parentSuspense, isSVG 普通情况下都为 null
然后在当前实例 instance 上创建属性 update 赋值为 effect() 函数的执行结果,effect() 函数传入两个参数:
- componentEffect() 函数,它会在具体逻辑之后提到,这里我们先不讲
- createDevEffectOptions(instance) 用于后续的派发更新,它会返回一个对象:
{
scheduler: queueJob(job) {
if (!queue.includes(job)) {
queue.push(job);
queueFlush();
}
},
onTrack: instance.rtc ? e => invokeHooks(instance.rtc, e) : void 0,
onTrigger: instance.rtg ? e => invokeHooks(instance.rtg, e) : void 0
}
然后,我们再来看看effect() 函数定义:
function effect(fn, options = EMPTY_OBJ) {
if (isEffect(fn)) {
fn = fn.raw;
}
const effect = createReactiveEffect(fn, options);
if (!options.lazy) {
effect();
}
return effect;
}
effect() 函数的逻辑较为简单,首先判断是否已经为 effect,是则取出之前定义的。不是则通过 ceateReactiveEffect() 创建一个 effect,而 creatReactiveEffect() 的逻辑会是这样:
function createReactiveEffect(fn, options) {
const effect = function reactiveEffect(...args) {
return run(effect, fn, args);
};
effect._isEffect = true;
effect.active = true;
effect.raw = fn;
effect.deps = [];
effect.options = options;
return effect;
}
可以看到在 createReactiveEffect() 中先定义了一个 reactiveEffect() 函数赋值给 effect,它又调用了 run()方法。而 run() 方法中传入三个参数,分别为:
- effect,即 reactiveEffect() 函数本身
- fn,即在刚开始 instance.update 是调用 effect 函数时,传入的函数 componentEffect()
- args 为一个空数组
并且,对 effect 进行了一些初始化,例如我们最熟悉的 Vue 2x 中的 deps 就出现在 effect 这个对象上。
然后,我们分析一下 run() 函数的逻辑:
function run(effect, fn, args) {
if (!effect.active) {
return fn(...args);
}
if (!effectStack.includes(effect)) {
cleanup(effect);
try {
enableTracking();
effectStack.push(effect);
activeEffect = effect;
return fn(...args);
}
finally {
effectStack.pop();
resetTracking();
activeEffect = effectStack[effectStack.length - 1];
}
}
}
在这里,初次创建 effect,我们会命中第二个分支逻辑,即当前 effectStack 栈中不包含这个 effect。那么,首先会执行 cleanup(effect),即遍历effect.deps,清空之前的依赖。
cleanup() 的逻辑其实在Vue 2x的源码中也有的,避免依赖的重复收集。并且,对比 Vue 2x,Vue 3.0 中的 track 其实相当于 watcher,在 track 中会进行依赖的收集,后面我们会讲 track 的具体实现
然后,执行enableTracking()和effectStack.push(effect),前者的逻辑很简单,即可以追踪,用于后续触发 track 的判断:
function enableTracking() {
trackStack.push(shouldTrack);
shouldTrack = true;
}
而后者,即将当前的 effect 添加到 effectStack 栈中。最后,执行 fn() ,即我们一开始定义的 instance.update = effect() 时候传入的 componentEffect():
instance.update = effect(function componentEffect() {
if (!instance.isMounted) {
const subTree = (instance.subTree = renderComponentRoot(instance));
// beforeMount hook
if (instance.bm !== null) {
invokeHooks(instance.bm);
}
if (initialVNode.el && hydrateNode) {
// vnode has adopted host node - perform hydration instead of mount.
hydrateNode(initialVNode.el, subTree, instance, parentSuspense);
}
else {
patch(null, subTree, container, anchor, instance, parentSuspense, isSVG);
initialVNode.el = subTree.el;
}
// mounted hook
if (instance.m !== null) {
queuePostRenderEffect(instance.m, parentSuspense);
}
// activated hook for keep-alive roots.
if (instance.a !== null &&
instance.vnode.shapeFlag & 256 /* COMPONENT_SHOULD_KEEP_ALIVE */) {
queuePostRenderEffect(instance.a, parentSuspense);
}
instance.isMounted = true;
}
else {
...
}
}, (process.env.NODE_ENV !== 'production') ? createDevEffectOptions(instance) : prodEffectOptions);
而接下来就会进入组件的渲染过程,其中涉及 renderComponnetRoot、patch 等等,这次我们并不会分析组件渲染具体细节。
安装渲染 Effect,是为后续的依赖收集做一个前期的准备。因为在后面会用到 setupRenderEffect 中定义的 effect() 函数,以及会调用 run() 函数。所以,接下来,我们就正式进入依赖收集部分的分析。
三、依赖收集
get
前面,我们已经讲到了在组件渲染过程会安装渲染 Effect。然后,进入渲染组件的阶段,即 renderComponentRoot(),而此时会调用 proxyToUse,即会触发 runtimeCompiledRenderProxyHandlers 的 get,即:
get(target, key) {
...
else if (renderContext !== EMPTY_OBJ && hasOwn(renderContext, key)) {
accessCache[key] = 1 /* CONTEXT */;
return renderContext[key];
}
...
}
可以看出,此时会命中 accessCache[key] = 1 和 renderContext[key] 。对于前者是做一个缓存的作用,后者是从当前的渲染上下文中获取 key 对应的值((对于本文这个 case,key 对应的就是 count,它的值为 0)。
那么,我想这个时候大家会立即反应,此时会触发这个 count 对应 Proxy 的 get。但是,在我们这个 case 中,用了 toRefs() 将 reactive 包裹导出,所以这个触发 get 的过程会分为两个阶段:
Proxy 对象toRefs() 后得到对象的结构:
{
value: 0
_isRef: true
get: function() {}
set: ƒunction(newVal) {}
}
我们先来看看 get() 的逻辑:
function createGetter(isReadonly = false, shallow = false) {
return function get(target, key, receiver) {
...
const res = Reflect.get(target, key, receiver);
if (isSymbol(key) && builtInSymbols.has(key)) {
return res;
}
...
// ref unwrapping, only for Objects, not for Arrays.
if (isRef(res) && !isArray(target)) {
return res.value;
}
track(target, "get" /* GET */, key);
return isObject(res)
? isReadonly
? // need to lazy access readonly and reactive here to avoid
// circular dependency
readonly(res)
: reactive(res)
: res;
};
}
两个阶段的不同点在于,第一阶段的 target 为一个 object(即上面所说的toRefs的对象结构),而第二阶段的 target 为普通对象 {count: 0}。具体细节可以看我上篇文章第一阶段:触发普通对象的 get
由于此时是第一阶段,所以我们会命中 isRef() 的逻辑,并返回 res.value 。此时就会触发 reactive 定义的 Proxy 对象的 get。并且需要注意的是 toRefs() 只能用于对象,否则我们即时触发了 get 也不能获取对应的值(这其实也是看源码的一些好处,深度理解 API 的使用)。
track
第二阶段:触发 Proxy 对象的 get
此时属于第二阶段,所以我们会命中 get 的最后逻辑:
track(target, "get" /* GET */, key);
return isObject(res)
? isReadonly
? // need to lazy access readonly and reactive here to avoid
// circular dependency
readonly(res)
: reactive(res)
: res;
可以看到,首先会调用 track() 函数,进行依赖收集,而 track() 函数定义如下:
function track(target, type, key) {
if (!shouldTrack || activeEffect === undefined) {
return;
}
let depsMap = targetMap.get(target);
if (depsMap === void 0) {
targetMap.set(target, (depsMap = new Map()));
}
let dep = depsMap.get(key);
if (dep === void 0) {
depsMap.set(key, (dep = new Set()));
}
if (!dep.has(activeEffect)) {
dep.add(activeEffect);
activeEffect.deps.push(dep);
if ((process.env.NODE_ENV !== 'production') && activeEffect.options.onTrack) {
activeEffect.options.onTrack({
effect: activeEffect,
target,
type,
key
});
}
}
}
可以看到,第一个分支逻辑不会命中,因为我们在前面分析 run() 的时候,就已经定义 ishouldTrack = true 和 activeEffect = effect。然后,命中 depsMap === void 0 逻辑,往 targetMap 中添加一个键名为 {count: 0} 键值为一个空的 Map:
if (depsMap === void 0) {
debugger
targetMap.set(target, (depsMap = new Map()));
}
而此时,我们也可以对比Vue 2.x,这个 {count: 0} 其实就相当于 data 选项(以下统称为 data)。所以,这里也可以理解成先对 data 初始化一个 Map,显然这个 Map 中存的就是不同属性对应的 dep
然后,对 count 属性初始化一个 Map 插入到 data 选项中,即:
let dep = depsMap.get(key);
if (dep === void 0) {
depsMap.set(key, (dep = new Set()));
}
所以,此时的 dep 就是 count 属性对应的主题对象了。接下来,则判断是否当前 activeEffect 存在于 count 的主题中,如果不存在则往主题 dep 中添加 activeEffect,并且将当前主题 dep 添加到 activeEffect 的 deps 数组中。
if (!dep.has(activeEffect)) {
dep.add(activeEffect);
activeEffect.deps.push(dep);
// 最后的分支逻辑,我们这次并不会命中
}
最后,再回到 get(),会返回 res 的值,在我们这个 case 是 res 的值是 0。
return isObject(res)
? isReadonly
? // need to lazy access readonly and reactive here to avoid
// circular dependency
readonly(res)
: reactive(res)
: res;
总结
好了,整个 reactive 的依赖收集过程,已经分析完了。我们再来回忆其中几个关键点,首先在组件渲染过程,会给当前 vm 实例创建一个 effect,然后将当前的 activeEffect 赋值为 effect,并在 effect 上创建一些属性,例如非常重要的 deps 用于保存依赖。
接下来,当该组件使用了 data 中的变量时,会访问对应变量的 get()。第一次访问 get() 会创建 data 对应的 depsMap,即 targetMap。然后再往 targetMap 的 depMap 中添加对应属性的 Map,即 depsMap。
创建完属性的 depsMap 后,一方面会往该属性的 depsMap 中添加当前 activeEffect,即收集订阅者。另一方面,将该属性的 depsMap 添加到 activeEffect 的 deps 数组中,即订阅主题。从而,形成整个依赖收集过程。
电脑刺绣绣花厂 http://www.szhdn.com 广州品牌设计公司https://www.houdianzi.com
四、派发更新
set
分析完依赖收集的过程,那么派发更新的整个过程的分析也将会水到渠成。首先,对应派发更新,是指当某个主题发生变化时,在我们这个 case 是当 count 发生变化时,此时会触发 data 的 set(),即 target 为 data,key 为 count。
function set(target, key, value, receiver) {
...
const oldValue = target[key];
if (!shallow) {
value = toRaw(value);
if (!isArray(target) && isRef(oldValue) && !isRef(value)) {
oldValue.value = value;
return true;
}
}
const hadKey = hasOwn(target, key);
const result = Reflect.set(target, key, value, receiver);
// don't trigger if target is something up in the prototype chain of original
if (target === toRaw(receiver)) {
if (!hadKey) {
trigger(target, "add" /* ADD */, key, value);
}
else if (hasChanged(value, oldValue)) {
trigger(target, "set" /* SET */, key, value, oldValue);
}
}
return result;
};
可以看到,oldValue 为 0,而我们的 shallow 此时为 false,value 为 1。那么,我们看一下 toRaw() 函数的逻辑:
function toRaw(observed) {
return reactiveToRaw.get(observed) || readonlyToRaw.get(observed) || observed;
}
toRaw() 中有两个 WeakMap 类型的变量 reactiveToRaw 和 readonlyRaw。前者是在初始化 reactive 的时候,将对应的 Proxy 对象存入 reactiveToRaw 这个 Map 中。后者,则是存入和前者相反的键值对。即:
function createReactiveObject(target, toProxy, toRaw, baseHandlers, collectionHandlers) {
...
observed = new Proxy(target, handlers);
toProxy.set(target, observed);
toRaw.set(observed, target);
...
}
很显然对于 toRaw() 方法而言,会返回 observer 即 1。所以,回到 set() 的逻辑,调用 Reflect.set() 方法将 data 上的 count 的值修改为 1。并且,接下来我们还会命中 target === toRaw(receiver) 的逻辑。
而 target === toRaw(receiver) 的逻辑会处理两个逻辑:
- 如果当前对象不存在该属性,触发 triger() 函数对应的 add。
- 或者该属性发生变化,触发 triger() 函数对应的 set
trigger
首先,我们先看一下 trigger() 函数的定义:
function trigger(target, type, key, newValue, oldValue, oldTarget) {
const depsMap = targetMap.get(target);
if (depsMap === void 0) {
// never been tracked
return;
}
const effects = new Set();
const computedRunners = new Set();
if (type === "clear" /* CLEAR */) {
...
}
else if (key === 'length' && isArray(target)) {
...
}
else {
// schedule runs for SET | ADD | DELETE
if (key !== void 0) {
addRunners(effects, computedRunners, depsMap.get(key));
}
// also run for iteration key on ADD | DELETE | Map.SET
if (type === "add" /* ADD */ ||
(type === "delete" /* DELETE */ && !isArray(target)) ||
(type === "set" /* SET */ && target instanceof Map)) {
const iterationKey = isArray(target) ? 'length' : ITERATE_KEY;
addRunners(effects, computedRunners, depsMap.get(iterationKey));
}
}
const run = (effect) => {
scheduleRun(effect, target, type, key, (process.env.NODE_ENV !== 'production')
? {
newValue,
oldValue,
oldTarget
}
: undefined);
};
// Important: computed effects must be run first so that computed getters
// can be invalidated before any normal effects that depend on them are run.
computedRunners.forEach(run);
effects.forEach(run);
}
并且,大家可以看到这里有一个细节,就是计算属性的派发更新要优先于普通属性。
在 trigger() 函数,首先获取当前 targetMap 中 data 对应的主题对象的 depsMap,而这个 depsMap 即我们在依赖收集时在 track 中定义的。
然后,初始化两个 Set 集合 effects 和 computedRunners ,用于记录普通属性或计算属性的 effect,这个过程是会在 addRunners() 中进行。
接下来,定义了一个 run() 函数,包裹了 scheduleRun() 函数,并对开发环境和生产环境进行不同参数的传递,这里由于我们处于开发环境,所以传入的是一个对象,即:
{
newValue: 1,
oldValue: 0,
oldTarget: undefined
}
然后遍历 effects,调用 run() 函数,而这个过程实际调用的是 scheduleRun():
function scheduleRun(effect, target, type, key, extraInfo) {
if ((process.env.NODE_ENV !== 'production') && effect.options.onTrigger) {
const event = {
effect,
target,
key,
type
};
effect.options.onTrigger(extraInfo ? extend(event, extraInfo) : event);
}
if (effect.options.scheduler !== void 0) {
effect.options.scheduler(effect);
}
else {
effect();
}
}
此时,我们会命中 effect.options.scheduler !== void 0 的逻辑。然后,调用 effect.options.scheduler() 函数,即调用 queueJob() 函数:
scheduler 这个属性是在 setupRenderEffect 调用 effect 函数时创建的。
function queueJob(job) {
if (!queue.includes(job)) {
queue.push(job);
queueFlush();
}
}
这里使用了一个队列维护所有 effect() 函数,其实也和 Vue 2x 相似,因为我们 effect() 相当于 watcher,而 Vue 2x 中对 watcher 的调用也是通过队列的方式维护。队列的存在具体是为了保持 watcher 触发的次序,例如先父 watcher 后子 watcher。
可以看到 我们会先将 effect() 函数添加到队列 queue 中,然后调用 queueFlush() 清空和调用 queue:
function queueFlush() {
if (!isFlushing && !isFlushPending) {
isFlushPending = true;
nextTick(flushJobs);
}
}
熟悉 Vue 2x 源码的同学,应该知道 Vue 2x 中的 watcher 也是在下一个 tick 中执行,而 Vue 3.0 也是一样。而 flushJobs 中就会对 queue 队列中的 effect() 进行执行:
function flushJobs(seen) {
isFlushPending = false;
isFlushing = true;
let job;
if ((process.env.NODE_ENV !== 'production')) {
seen = seen || new Map();
}
while ((job = queue.shift()) !== undefined) {
if (job === null) {
continue;
}
if ((process.env.NODE_ENV !== 'production')) {
checkRecursiveUpdates(seen, job);
}
callWithErrorHandling(job, null, 12 /* SCHEDULER */);
}
flushPostFlushCbs(seen);
isFlushing = false;
if (queue.length || postFlushCbs.length) {
flushJobs(seen);
}
}
flushJob() 主要会做几件事:
- 首先初始化一个 Map 集合 seen,然后在递归 queue 队列的过程,调用 checkRecursiveUpdates() 记录该 job 即 effect() 触发的次数。如果超过 100 次会抛出错误。
- 然后调用 callWithErrorHandling(),执行 job 即 effect(),而我们都知道的是这个 effect 是在 createReactiveEffect() 时创建的 reactiveEffect(),所以,最终会执行 run() 方法,即执行最初在 setupRenderEffectect 定义的 effect():
const setupRenderEffectect = (instance, initialVNode, container, anchor, parentSuspense, isSVG) => {
// create reactive effect for rendering
instance.update = effect(function componentEffect() {
if (!instance.isMounted) {
...
}
else {
...
const nextTree = renderComponentRoot(instance);
const prevTree = instance.subTree;
instance.subTree = nextTree;
if (instance.bu !== null) {
invokeHooks(instance.bu);
}
if (instance.refs !== EMPTY_OBJ) {
instance.refs = {};
}
patch(prevTree, nextTree,
hostParentNode(prevTree.el),
getNextHostNode(prevTree), instance, parentSuspense, isSVG);
instance.vnode.el = nextTree.el;
if (next === null) {
updateHOCHostEl(instance, nextTree.el);
}
if (instance.u !== null) {
queuePostRenderEffect(instance.u, parentSuspense);
}
if ((process.env.NODE_ENV !== 'production')) {
popWarningContext();
}
}
}, (process.env.NODE_ENV !== 'production') ? createDevEffectOptions(instance) : prodEffectOptions);
};
即此时就是派发更新的最后阶段了,会先 renderComponentRoot() 创建组件 VNode,然后 patch() ,即走一遍组件渲染的过程(当然此时称为更新更为贴切)。从而,完成视图的更新。
总结
同样地,我们也来回忆派发更新过程的几个关键点。首先,触发依赖的 set(),它会调用 Reflect.set() 修改依赖对应属性的值。然后,调用 trigger() 函数,获取 targetMap 中对应属性的主题,即 depsMap(),并且将 depsMap 中的 effect() 存进 effect 集合中。接下来,就将 effect 进队,在下一个 tick 中清空和执行所有 effect。最后,和在初始化的时候提及的一样,走组件的更新过程,即 renderComponent()、patch() 等等