spark读取hdfs数据本地性异常

在分布式计算中,为了提高计算速度,数据本地性是其中重要的一环。
不过有时候它同样也会带来一些问题。

一.问题描述

在分布式计算中,大多数情况下要做到移动计算而非移动数据,所以数据本地性尤其重要,因此我们往往也是将hdfs和spark部署在相同的节点上,有些人可能会发现即使他已经这么做了,在spark的任务中的locality还是ANY,这说明所有的数据都是走的网络IO。

ANY

在没有没有shuffle的情况下,仅在数据读取阶段网络IO占用都很严重,可以看下ganglia的监控,最高峰出现在读取数据阶段
ganglia

后来发现slave的标识都是ip

这里写图片描述

二.解决方案

而hdfs以hostname作为slave标示,所以改变启动slave的方式

start-slave.sh -h <hostname> <master>

启动后

这里写图片描述

再运行任务就变成了NODE_LOCAL,效率有了极大的提升

这里写图片描述

三.数据本地性的副作用

大多数情况下,数据本地性可以减少网络的IO,提高程序整体的运行效率。不过在一些比较特殊的情况下(Spark的延时调度),他反而会拖累整体运行速度。

taskSetManager在分发任务之前会先计算数据本地性,优先级依次是:

process(同一个executor) -> node_local(同一个节点) -> rack_local(同一个机架) -> any(任何节点)

Spark会优先执行高优先级的任务,如果一个task运行的时间很短(小于设置的spark.locality.wait时间),则数据本地性下一级别的任务则一直不会启动,这就是Spark的延时调度机制。

举个极端例子:运行一个count任务,如果数据全都堆积在某一台节点上,那将只会有这台机器在长期执行任务,集群中的其他机器则会处于等待状态(等待本地性降级)而不执行任务,造成了大量的资源浪费。

判断的公式为:

curTime – lastLaunchTime >= localityWaits(currentLocalityIndex)

其中 curTime 为系统当前时间,lastLaunchTime 为在某优先级下最后一次启动task的时间

如果满足这个条件则会进入下一个优先级的时间判断,直到 any,不满足则分配当前优先级的任务。

数据本地性任务分配的源码在 taskSetManager.scala

如果存在大量executor处于等待状态,可以降低以下参数的值(也可以设置为0),默认都是3s。

spark.locality.wait
spark.locality.wait.process
spark.locality.wait.node
spark.locality.wait.rack

当你数据本地性很差,可适当提高上述值,当然也可以直接在集群中对数据进行balance。

posted on 2015-09-24 15:05  毛小娃  阅读(519)  评论(0编辑  收藏  举报

导航