halcon之屌炸天的自标定(2)

自 halcon之屌炸天的自标定(1)发出以后,有朋友看了文章也应用到了自己的测量项目中,效果奇好,成功搞定了20um的需求,可喜可贺。

 
在halcon之屌炸天的自标定(1)中我提到了一片论文:
T. Thormälen, H. Broszio: “Automatic line-based estimation of radial lens distortion”; in: Integrated Computer-Aided Engineering; vol. 12; pp. 177-190; 2005.
google了好久都是收费不能下载,有位朋友看到后帮我下载了,感谢。
 
所以本次就介绍下这篇论文:了解一下具体原理,这样用起来更得心应手。
论文下载地址:http://pan.baidu.com/s/1ntXnz09  在阅读下面内容时请先阅读原论文,要不然会云里雾里额。
 
计算畸变系数的流程:
  • 1.轮廓检测,找出满足条件的线段,相当于halcon的 edge_sub_pix + segment_contour_xld
  • 2.共线线段连接,相当于halcon的 union_collinear_contours_xld
  • 3.取出干扰线,就是去除在现实中不是直线的线段,可以用halcon中的select_contour_xld
  • 4.求畸变参数,相当于halcon的 radial_distortion_self_calibration

论文中计算畸变系数的方法:
设置ru 为无畸变坐标点,rd为畸变后坐标点,k为畸变系数,两者关系式可用泰勒公式表示 (式1、2、3)
 
然后论文中又指出,实验标明k3,k5对畸变影响最大,其他k影像甚微,于是就把其他K项去掉变成了
 
所以计算畸变系数是否精确的关键就在ru rd 的选取上,坐着给出下图来解释,共线连接后长线段更能反应畸变情况,以此说明步骤2的必要性。
 
 
 
随后作者用RANSAC算法进一步过滤干扰线,并用实验标明RANSAC的好处。
 
 
说了这么多是不是有点晕晕的?要想了解够透彻还是要下载论文仔细阅读额~
 
 
 
关注微信:halconhub,每日获取halcon精华文章





posted @   小马_xiaoLV2  阅读(5384)  评论(0编辑  收藏  举报
编辑推荐:
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
阅读排行:
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· Docker 太简单,K8s 太复杂?w7panel 让容器管理更轻松!
点击右上角即可分享
微信分享提示