线性回归、逻辑回归算法解析,特征选择,交叉验证,sparkmllib
线性回归、逻辑回归可以解决分类问题(二分类、多分类)、回归问题。
主要技术点
线性回归
高斯分布
最大似然估计MLE
最小二乘法的本质
Logistic回归
分类问题的首选算法
重要技术
梯度下降算法
最大似然估计
特征选择
交叉验证
一、线性回归
y=ax+b (一个变量)
两个变量的情况
使用极大似然估计解释最小二乘
误差满足中心极限定理
误差ε (i) (1≤i≤m)是独立同分布的,服从均值
为0,方差为某定值σ 2 的高斯分布。
中心极限定理解释
实际问题中,很多随机现象可以看做众多因
素的独立影响的综合反应,往往近似服从正
态分布。
城市耗电量:大量用户的耗电量总和
测量误差:许多观察不到的、微小误差的总和
似然函数
高斯的对数似然
似然函数求最大值相应的
取最小(最小二乘法)
目标函数求解
梯度
线性回归的复杂度惩罚因子(正则项)
L2正则化
L1正则化
Elastic Net正则化
选取
交叉验证法(三折交叉验证、十折交叉验证)
把样本分出一部分验证数据,如三折交叉验证 可以分为 训练数据-训练数据-验证数据-测试数据
交叉验证
spark中有交叉验证的实现部分
CrossValidator cv=new CrossValidator() .setEstimator(pipeline) .setEvaluator(new RegressionEvaluator() .setLabelCol("rating") .setPredictionCol("predict_rating") .setMetricName("rmse")) .setEstimatorParamMaps(paramGrid) .setNumFolds(5);
梯度下降算法
初始化θ(随机初始化)
沿着负梯度方向迭代,更新后的θ使J(θ)更小
对目标函数求偏导数
批量梯度下降算法
梯度下降有可能找到全局最小值,批量梯度下降会找到局部最小值
特征选择
如特征为x1、x2 输出为y
可以应用提升特征的方法达到更好的效果
特征选择很重要,除了人工选择,还可以用
其他机器学习方法,如随机森林、PCA、
LDA等。
spark代码
LogisticRegression实现 分类同理
import java.io.PrintWriter import java.util import org.apache.spark.ml.attribute.{Attribute, AttributeGroup, NumericAttribute} import org.apache.spark.ml.classification.{BinaryLogisticRegressionTrainingSummary, LogisticRegressionModel, LogisticRegression} import org.apache.spark.mllib.classification.LogisticRegressionWithSGD import org.apache.spark.mllib.linalg.Vectors import org.apache.spark.rdd.RDD import org.apache.spark.sql.{SQLContext, DataFrame, Row} import org.apache.spark.sql.types.{DataTypes, StructField} import org.apache.spark.{SparkContext, SparkConf} object LogisticRegression { def main(args: Array[String]) { val conf = new SparkConf().setAppName("test").setMaster("local") val sc = new SparkContext(conf) val sql = new SQLContext(sc); val training: DataFrame = sql.read.format("libsvm").load("a.txt") // val training = sc.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt") val data: RDD[String] = sc.textFile("string.txt") val rw= data.map{ row => var split: Array[String] = row.split(",") Row(split(0).toDouble,Vectors.dense(split(1).toDouble,split(2).toDouble)) } val defaultAttr = NumericAttribute.defaultAttr val attrs = Array("f1", "f2").map(defaultAttr.withName) val attrGroup = new AttributeGroup("features", attrs.asInstanceOf[Array[Attribute]]) val fields = new util.ArrayList[StructField]; fields.add(DataTypes.createStructField("label", DataTypes.DoubleType, true)); fields.add(attrGroup.toStructField()); val structType = DataTypes.createStructType(fields); val df: DataFrame = sql.createDataFrame(rw,structType) df.printSchema() df.show() val lr = new LogisticRegression() .setMaxIter(10) .setRegParam(0.3) .setElasticNetParam(1)//默认0 L2 1---》L1 // Fit the model val lrModel: LogisticRegressionModel = lr.fit(df) // Print the coefficients and intercept for logistic regression // coefficients 系数 intercept 截距 println(s"Coefficients: ${lrModel.coefficients} Intercept: ${lrModel.intercept}") lrModel.write.overwrite().save("F:\\mode") val weights: Array[Double] = lrModel.weights.toArray val pw = new PrintWriter("F:\\weights"); //遍历 for(i<- 0 until weights.length){ //通过map得到每个下标相应的特征名 //特征名对应相应的权重 val str = weights(i) pw.write(str.toString) pw.println() } pw.flush() pw.close() } }
样本数据
0 1:5.1 2:3.5 3:1.4 4:0.2 0 1:4.9 2:3.0 3:1.4 4:0.2 0 1:4.7 2:3.2 3:1.3 4:0.2 0 1:4.6 2:3.1 3:1.5 4:0.2 0 1:5.0 2:3.6 3:1.4 4:0.2 0 1:5.4 2:3.9 3:1.7 4:0.4 0 1:4.6 2:3.4 3:1.4 4:0.3 0 1:5.0 2:3.4 3:1.5 4:0.2 0 1:4.4 2:2.9 3:1.4 4:0.2 0 1:4.9 2:3.1 3:1.5 4:0.1 0 1:5.4 2:3.7 3:1.5 4:0.2 0 1:4.8 2:3.4 3:1.6 4:0.2 0 1:4.8 2:3.0 3:1.4 4:0.1 0 1:4.3 2:3.0 3:1.1 4:0.1 0 1:5.8 2:4.0 3:1.2 4:0.2 0 1:5.7 2:4.4 3:1.5 4:0.4 0 1:5.4 2:3.9 3:1.3 4:0.4 0 1:5.1 2:3.5 3:1.4 4:0.3 0 1:5.7 2:3.8 3:1.7 4:0.3 0 1:5.1 2:3.8 3:1.5 4:0.3 0 1:5.4 2:3.4 3:1.7 4:0.2 0 1:5.1 2:3.7 3:1.5 4:0.4 0 1:4.6 2:3.6 3:1.0 4:0.2 0 1:5.1 2:3.3 3:1.7 4:0.5 0 1:4.8 2:3.4 3:1.9 4:0.2 0 1:5.0 2:3.0 3:1.6 4:0.2 0 1:5.0 2:3.4 3:1.6 4:0.4 0 1:5.2 2:3.5 3:1.5 4:0.2 0 1:5.2 2:3.4 3:1.4 4:0.2 0 1:4.7 2:3.2 3:1.6 4:0.2 0 1:4.8 2:3.1 3:1.6 4:0.2 0 1:5.4 2:3.4 3:1.5 4:0.4 0 1:5.2 2:4.1 3:1.5 4:0.1 0 1:5.5 2:4.2 3:1.4 4:0.2 0 1:4.9 2:3.1 3:1.5 4:0.1 0 1:5.0 2:3.2 3:1.2 4:0.2 0 1:5.5 2:3.5 3:1.3 4:0.2 0 1:4.9 2:3.1 3:1.5 4:0.1 0 1:4.4 2:3.0 3:1.3 4:0.2 0 1:5.1 2:3.4 3:1.5 4:0.2 0 1:5.0 2:3.5 3:1.3 4:0.3 0 1:4.5 2:2.3 3:1.3 4:0.3 0 1:4.4 2:3.2 3:1.3 4:0.2 0 1:5.0 2:3.5 3:1.6 4:0.6 0 1:5.1 2:3.8 3:1.9 4:0.4 0 1:4.8 2:3.0 3:1.4 4:0.3 0 1:5.1 2:3.8 3:1.6 4:0.2 0 1:4.6 2:3.2 3:1.4 4:0.2 0 1:5.3 2:3.7 3:1.5 4:0.2 0 1:5.0 2:3.3 3:1.4 4:0.2 1 1:7.0 2:3.2 3:4.7 4:1.4 1 1:6.4 2:3.2 3:4.5 4:1.5 1 1:6.9 2:3.1 3:4.9 4:1.5 1 1:5.5 2:2.3 3:4.0 4:1.3 1 1:6.5 2:2.8 3:4.6 4:1.5 1 1:5.7 2:2.8 3:4.5 4:1.3 1 1:6.3 2:3.3 3:4.7 4:1.6 1 1:4.9 2:2.4 3:3.3 4:1.0 1 1:6.6 2:2.9 3:4.6 4:1.3 1 1:5.2 2:2.7 3:3.9 4:1.4 1 1:5.0 2:2.0 3:3.5 4:1.0 1 1:5.9 2:3.0 3:4.2 4:1.5 1 1:6.0 2:2.2 3:4.0 4:1.0 1 1:6.1 2:2.9 3:4.7 4:1.4 1 1:5.6 2:2.9 3:3.6 4:1.3 1 1:6.7 2:3.1 3:4.4 4:1.4 1 1:5.6 2:3.0 3:4.5 4:1.5 1 1:5.8 2:2.7 3:4.1 4:1.0 1 1:6.2 2:2.2 3:4.5 4:1.5 1 1:5.6 2:2.5 3:3.9 4:1.1 1 1:5.9 2:3.2 3:4.8 4:1.8 1 1:6.1 2:2.8 3:4.0 4:1.3 1 1:6.3 2:2.5 3:4.9 4:1.5 1 1:6.1 2:2.8 3:4.7 4:1.2 1 1:6.4 2:2.9 3:4.3 4:1.3 1 1:6.6 2:3.0 3:4.4 4:1.4 1 1:6.8 2:2.8 3:4.8 4:1.4 1 1:6.7 2:3.0 3:5.0 4:1.7 1 1:6.0 2:2.9 3:4.5 4:1.5 1 1:5.7 2:2.6 3:3.5 4:1.0 1 1:5.5 2:2.4 3:3.8 4:1.1 1 1:5.5 2:2.4 3:3.7 4:1.0 1 1:5.8 2:2.7 3:3.9 4:1.2 1 1:6.0 2:2.7 3:5.1 4:1.6 1 1:5.4 2:3.0 3:4.5 4:1.5 1 1:6.0 2:3.4 3:4.5 4:1.6 1 1:6.7 2:3.1 3:4.7 4:1.5 1 1:6.3 2:2.3 3:4.4 4:1.3 1 1:5.6 2:3.0 3:4.1 4:1.3 1 1:5.5 2:2.5 3:4.0 4:1.3 1 1:5.5 2:2.6 3:4.4 4:1.2 1 1:6.1 2:3.0 3:4.6 4:1.4 1 1:5.8 2:2.6 3:4.0 4:1.2 1 1:5.0 2:2.3 3:3.3 4:1.0 1 1:5.6 2:2.7 3:4.2 4:1.3 1 1:5.7 2:3.0 3:4.2 4:1.2 1 1:5.7 2:2.9 3:4.2 4:1.3 1 1:6.2 2:2.9 3:4.3 4:1.3 1 1:5.1 2:2.5 3:3.0 4:1.1 1 1:5.7 2:2.8 3:4.1 4:1.3 2 1:6.3 2:3.3 3:6.0 4:2.5 2 1:5.8 2:2.7 3:5.1 4:1.9 2 1:7.1 2:3.0 3:5.9 4:2.1 2 1:6.3 2:2.9 3:5.6 4:1.8 2 1:6.5 2:3.0 3:5.8 4:2.2 2 1:7.6 2:3.0 3:6.6 4:2.1 2 1:4.9 2:2.5 3:4.5 4:1.7 2 1:7.3 2:2.9 3:6.3 4:1.8 2 1:6.7 2:2.5 3:5.8 4:1.8 2 1:7.2 2:3.6 3:6.1 4:2.5 2 1:6.5 2:3.2 3:5.1 4:2.0 2 1:6.4 2:2.7 3:5.3 4:1.9 2 1:6.8 2:3.0 3:5.5 4:2.1 2 1:5.7 2:2.5 3:5.0 4:2.0 2 1:5.8 2:2.8 3:5.1 4:2.4 2 1:6.4 2:3.2 3:5.3 4:2.3 2 1:6.5 2:3.0 3:5.5 4:1.8 2 1:7.7 2:3.8 3:6.7 4:2.2 2 1:7.7 2:2.6 3:6.9 4:2.3 2 1:6.0 2:2.2 3:5.0 4:1.5 2 1:6.9 2:3.2 3:5.7 4:2.3 2 1:5.6 2:2.8 3:4.9 4:2.0 2 1:7.7 2:2.8 3:6.7 4:2.0 2 1:6.3 2:2.7 3:4.9 4:1.8 2 1:6.7 2:3.3 3:5.7 4:2.1 2 1:7.2 2:3.2 3:6.0 4:1.8 2 1:6.2 2:2.8 3:4.8 4:1.8 2 1:6.1 2:3.0 3:4.9 4:1.8 2 1:6.4 2:2.8 3:5.6 4:2.1 2 1:7.2 2:3.0 3:5.8 4:1.6 2 1:7.4 2:2.8 3:6.1 4:1.9 2 1:7.9 2:3.8 3:6.4 4:2.0 2 1:6.4 2:2.8 3:5.6 4:2.2 2 1:6.3 2:2.8 3:5.1 4:1.5 2 1:6.1 2:2.6 3:5.6 4:1.4 2 1:7.7 2:3.0 3:6.1 4:2.3 2 1:6.3 2:3.4 3:5.6 4:2.4 2 1:6.4 2:3.1 3:5.5 4:1.8 2 1:6.0 2:3.0 3:4.8 4:1.8 2 1:6.9 2:3.1 3:5.4 4:2.1 2 1:6.7 2:3.1 3:5.6 4:2.4 2 1:6.9 2:3.1 3:5.1 4:2.3 2 1:5.8 2:2.7 3:5.1 4:1.9 2 1:6.8 2:3.2 3:5.9 4:2.3 2 1:6.7 2:3.3 3:5.7 4:2.5 2 1:6.7 2:3.0 3:5.2 4:2.3 2 1:6.3 2:2.5 3:5.0 4:1.9 2 1:6.5 2:3.0 3:5.2 4:2.0 2 1:6.2 2:3.4 3:5.4 4:2.3 2 1:5.9 2:3.0 3:5.1 4:1.8