LeetCode-Maximum Subarray[dp]
Maximum Subarray
Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [−2,1,−3,4,−1,2,1,−5,4]
,
the contiguous subarray [4,−1,2,1]
has the largest sum = 6
.
More practice:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
标签: Divide and Conquer Array Dynamic Programming
分析:最大连续子和问题,我们可以从头遍历数组,遍历到元素 i 时有两个选择:
1.如果它大于等于零时,那就将它与前面的子和sum相加。
2.如果它小于零时,则由该元素作为下一个子和sum的开头元素
在遍历数组的同时记录最大的子和sumj即为最大连续子和;
这里用动态规划的方法解决,设dp[i]表示从首元素到元素i的最大连续子和,所以有状态转移方程为:
dp[i]=max(dp[i-1]+array[i],array[i]);
参考代码:
1 public class Solution { 2 public int maxSubArray(int[] A) { 3 int len=A.length; 4 int ret=Integer.MIN_VALUE; 5 int dp=0; 6 for(int i=0;i<len;i++){ 7 dp=Math.max(dp+A[i], A[i]); 8 ret=Math.max(ret, dp); 9 } 10 return ret; 11 } 12 }