四.idea本地调试hadoop程序
目录:
1.先上案例代码
WordCount.java:
import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.util.GenericOptionsParser; public class WordCount { //WordCOuntMap方法接收LongWritable,Text的参数,返回<Text, IntWriatable>键值对。 public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{ private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(Object key, Text value, Context context ) throws IOException, InterruptedException { StringTokenizer itr = new StringTokenizer(value.toString()); while (itr.hasMoreTokens()) { word.set(itr.nextToken()); context.write(word, one); } } } public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> { private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values, Context context ) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } result.set(sum); context.write(key, result); } } public static void main(String[] args) throws Exception { System.setProperty("hadoop.home.dir", "D:\\hadoop-2.7.6");//这一行一定要 Configuration conf = new Configuration(); String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs(); if (otherArgs.length != 2) { System.err.println("Usage: wordcount <in> <out>"); System.exit(2); } Job job = new Job(conf, "word count"); job.setJarByClass(WordCount.class); job.setMapperClass(TokenizerMapper.class); job.setCombinerClass(IntSumReducer.class); job.setReducerClass(IntSumReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(otherArgs[0])); FileOutputFormat.setOutputPath(job, new Path(otherArgs[1])); System.exit(job.waitForCompletion(true) ? 0 : 1); } }
如下图,至于NativeIO,可从https://download.csdn.net/download/xiaoliu123586/10551225里下载
2.新建input文件夹,里面放w.txt
yaojiale hahaha
yaojiale llllll
3.运行时可能的报错
需要加winutils.exe,libwinutils.lib 拷贝到%HADOOP_HOME%\bin目录 ,可能还要下载hadoop.dll,并拷贝到c:\windows\system32目录中。
以上所需,可在https://download.csdn.net/download/xiaoliu123586/10551225里下载
附:eclipse 中运行 Hadoop2.7.3 map reduce程序 出现错误(null) entry in command string: null chmod 0700
4.运行加main参数:input output5
分别代表读取本地本项目input文件夹(内有w.txt,见图一),以及输出到output5文件夹
5.至于网上说的project structure>module>添加本地hadoop jar包,这个不是必须,比如,使用maven pom.xml的话,就能得到库支持 ,
而上述把winutils.exe等东西 添加到本地hadoop_home下(bin下)(如,我的是 D:/hadoop-2.7.6/),
使添加进去的东西起作用的,是以下代码:
System.setProperty("hadoop.home.dir", "D:\\hadoop-2.7.6");