Python四种统计图

Matplotlib 安装

pip install matplotlib

通过导入 matplotlib 库,然后查看 matplotlib 库的版本号:

import matplotlib

print(matplotlib.__version__)

Matplotlib 绘图标记

绘图过程如果我们想要给坐标自定义一些不一样的标记,就可以使用 plot() 方法的 marker 参数来定义。

import matplotlib.pyplot as plt
import numpy as np

ypoints = np.array([1,3,4,5,8,9,6,1,3,4,5,2,4])

plt.plot(ypoints, marker = 'o')
plt.show()

Matplotlib 绘图线

绘图过程如果我们自定义线的样式,包括线的类型、颜色和大小等。

线的类型

线的类型可以使用 linestyle 参数来定义,简写为 ls。

类型简写说明
'solid' (默认) '-' 实线
'dotted' ':' 点虚线
'dashed' '--' 破折线
'dashdot' '-.' 点划线
'None' '' 或 ' ' 不画线
import matplotlib.pyplot as plt
import numpy as np

ypoints = np.array([6, 2, 13, 10])

plt.plot(ypoints, ls = '-.')
plt.show()

线的颜色

线的颜色可以使用 color 参数来定义,简写为 c。

颜色标记描述
'r' 红色
'g' 绿色
'b' 蓝色
'c' 青色
'm' 品红
'y' 黄色
'k' 黑色
'w' 白色

 

import matplotlib.pyplot as plt
import numpy as np

ypoints = np.array([6, 2, 13, 10])

plt.plot(ypoints, color = 'r')
plt.show()

Matplotlib 轴标签和标题

我们可以使用 xlabel() 和 ylabel() 方法来设置 x 轴和 y 轴的标签。

标题

我们可以使用 title() 方法来设置标题。

复制代码
import numpy as np
import matplotlib.pyplot as plt

x = np.array([1, 2, 3, 4])
y = np.array([1, 4, 9, 16])
plt.plot(x, y)

plt.title("RUNOOB TEST TITLE")
plt.xlabel("x - label")
plt.ylabel("y - label")

plt.show()
复制代码

Matplotlib 网格线

我们可以使用 pyplot 中的 grid() 方法来设置图表中的网格线。

grid() 方法语法格式如下:

matplotlib.pyplot.grid(b=None, which='major', axis='both', )

参数说明:

  b:可选,默认为 None,可以设置布尔值,true 为显示网格线,false 为不显示,如果设置 **kwargs 参数,则值为 true。

  which:可选,可选值有 'major'、'minor' 和 'both',默认为 'major',表示应用更改的网格线。

  axis:可选,设置显示哪个方向的网格线,可以是取 'both'(默认),'x' 或 'y',分别表示两个方向,x 轴方向或 y 轴方向。

  **kwargs:可选,设置网格样式,可以是 color='r', linestyle='-' 和 linewidth=2,分别表示网格线的颜色,样式和宽度。

 

Matplotlib 绘制多图

我们可以使用 pyplot 中的 subplot() 和 subplots() 方法来绘制多个子图。

subplot() 方法在绘图时需要指定位置,subplots() 方法可以一次生成多个,在调用时只需要调用生成对象的 ax 即可。

 

 

复制代码
import matplotlib.pyplot as plt
import numpy as np

#plot 1:
x = np.array([0, 6])
y = np.array([0, 100])

plt.subplot(2, 2, 1)#2行2列位置在第一个
plt.plot(x,y)
plt.title("plot 1")

#plot 2:
x = np.array([1, 2, 3, 4])
y = np.array([1, 4, 9, 16])

plt.subplot(2, 2, 2)
plt.plot(x,y)
plt.title("plot 2")

#plot 3:
x = np.array([1, 2, 3, 4])
y = np.array([3, 5, 7, 9])

plt.subplot(2, 2, 3)
plt.plot(x,y)
plt.title("plot 3")

#plot 4:
x = np.array([1, 2, 3, 4])
y = np.array([4, 5, 6, 7])

plt.subplot(2, 2, 4)
plt.plot(x,y)
plt.title("plot 4")

plt.suptitle("RUNOOB subplot Test")
plt.show()
复制代码

 

Matplotlib 散点图

我们可以使用 pyplot 中的 scatter() 方法来绘制散点图。

import matplotlib.pyplot as plt
import numpy as np

x = np.array([1, 2, 3, 4, 5, 6, 7, 8])
y = np.array([1, 4, 9, 16, 7, 11, 23, 18])

plt.scatter(x, y)
plt.show()

使用随机数来设置散点图:

复制代码
import numpy as np
import matplotlib.pyplot as plt

# 随机数生成器的种子
np.random.seed(19680801)


N = 50
x = np.random.rand(N)
y = np.random.rand(N)
colors = np.random.rand(N)
area = (30 * np.random.rand(N))**2  # 0 to 15 point radii

plt.scatter(x, y, s=area, c=colors, alpha=0.5) # 设置颜色及透明度

plt.title("RUNOOB Scatter Test") # 设置标题

plt.show()
复制代码

Matplotlib 柱形图

我们可以使用 pyplot 中的 bar() 方法来绘制柱形图。

import matplotlib.pyplot as plt
import numpy as np

x = np.array(["Runoob-1", "Runoob-2", "Runoob-3", "C-RUNOOB"])
y = np.array([12, 22, 6, 18])

plt.bar(x, y,  color = ["#4CAF50","red","hotpink","#556B2F"])
plt.show()

Matplotlib 饼图

我们可以使用 pyplot 中的 pie() 方法来绘制饼图。

复制代码
import matplotlib.pyplot as plt
import numpy as np

y = np.array([35, 25, 25, 15])

plt.pie(y,
        labels=['A','B','C','D'], # 设置饼图标签
        colors=["#d5695d", "#5d8ca8", "#65a479", "#a564c9"], # 设置饼图颜色
        explode=(0, 0.2, 0, 0), # 第二部分突出显示,值越大,距离中心越远
        autopct='%.2f%%', # 格式化输出百分比
       )
plt.title("RUNOOB Pie Test")
plt.show()
复制代码

 

posted @   小酒馆里的清茶  阅读(627)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 提示词工程——AI应用必不可少的技术
· 地球OL攻略 —— 某应届生求职总结
· 字符编码:从基础到乱码解决
· SpringCloud带你走进微服务的世界
点击右上角即可分享
微信分享提示