4-10 一维到三维推广
一维到三维推广( 1D and 3D generalizations of models)
2D 卷积
你可能会输入一个 14×14 的图像,并使用一个 5×5 的过滤器进行卷积,接下来你看到了 14×14 图像是如何与 5×5 的过滤器进行卷积的,通过这个操作你会得到 10×10 的输出。
如果你使用了多通道,比如 14×14×3,那么相匹配的过滤器可能是 5×5×3,如果你使用了多重过滤,比如 16,最终你得到的是 10×10×16。
1 维数据
左边是一个 EKG 信号,或者说是心电图,当你在你的胸部放置一个电极,电极透过胸部测量心跳带来的微弱电流,正因为心脏跳动,产生的微弱电波能被一组电极测量,这就是人心跳产生的 EKG,每一个峰值都对应着一次心跳。
因为 EKG 数据是由时间序列对应的每个瞬间的电压组成,这次不是一个 14×14 的尺寸输入,你可能只有一个14 尺寸输入,在这种情况下你可能需要使用一个 1 维过滤进行卷积,你只需要一个 1×5 的过滤器,而不是一个 5×5 的。
当你对这个 1 维信号使用卷积,你将发现一个 14 维的数据与 5 维数据进行卷积,并产生一个 10 维输出。
再一次如果你使用多通道,在这种场景下可能会获得一个 14×1 的通道。如果你使用一个 EKG,就是 5×1 的,如果你有 16 个过滤器,可能你最后会获得一个 10×16 的数据,这可能会是你卷积网络中的某一层。对于卷积网络的下一层,如果输入一个 10×16 数据,你也可以使用一个 5 维过滤器进行卷积,这需要 16 个通道进行匹配,如果你有 32 个过滤器,另一层的输出结果就是 6×32,如果你使用了 32 个过滤器的话。
3D 数据
与 1D 数列或数字矩阵不同,你现在有了一个 3D 块,一个 3D 输入数据。以你做 CT 扫描为例,这是一种使用 X 光照射,然后输出身体的 3D 模型, CT 扫描实现的是它可以获取你身体不同片段(图片信息)。
一种对这份数据的理解方式是,假设你的数据现在具备一定长度、宽度与高度,其中每一个切片都与躯干的切片对应。
如果你想要在 3D 扫描或 CT 扫描中应用卷积网络进行特征识别,为了简单起见,如果你有一个 3D 对象,比如说是 14×14×14,如果你现在使用 5×5×5 过滤器进行卷积,你的过滤器现在也是 3D 的,这将会给你一个10×10×10 的结果输出:
技术上来说你也可以再×1,如果这有一个 1 的通道。这仅仅是一个 3D 模块,但是你的数据可以有不同数目的通道,那种情况下也是乘 1,因为通道的数目必须与过滤器匹配。如果你使用 16 过滤器处理 5×5×5×1,接下来的输出将是 10×10×10×16,这将成为你 3D 数据卷积网络上的一层。如果下一层卷积使用 5×5×5×16 维度的过滤器再次卷积,通道数目也与往常一样匹配,如果你有 32 个过滤器,操作也与之前相同,最终你得到一个 6×6×6×32 的输出。
某种程度上 3D 数据也可以使用 3D 卷积网络学习,这些过滤器实现的功能正是通过你的 3D 数据进行特征检测。 CT 医疗扫描是 3D 数据的一个实例,另一个数据处理的例子是你可以将电影中随时间变化的不同视频切片看作是 3D 数据,你可以将这个技术用于检测动作及人物行为。