2-4 网络中的网络以及 1×1 卷积
网络中的网络以及 1×1 卷积( Network in Network and 1×1 convolutions)
过滤器为 1×1,这里是数字 2,输入一张 6×6×1 的图片,然后对它做卷积,起过滤器大小为 1×1×1,结果相当于把这个图片乘以数字 2,所以前三个单元格分别是 2、 4、 6 等等。用 1×1 的过滤器进行卷积,似乎用处不大,只是对输入矩阵乘以某个数字。但这仅仅是对
6×6×1 的一个通道图片来说, 1×1 卷积效果不佳。
如果是一张 6×6×32 的图片,那么使用 1×1 过滤器进行卷积效果更好。具体来说, 1×1 卷积所实现的功能是遍历这 36 个单元格,计算左图中 32 个数字和过滤器中 32 个数字的元积之和,然后应用 ReLU 非线性函数。
这个 1×1×32 过滤器中的 32 个数字可以这样理解,一个神经元的输入是 32 个数字,即相同高度和宽度上某一切片上的 32 个数字,这 32 个数字具有不同通道,乘以 32 个权重(将过滤器中的 32 个数理解为权重),然后应用 ReLU 非线性函数,在这里输出相应的结果。
一般来说,如果过滤器不止一个,而是多个,就好像有多个输入单元,其输入内容为一个切片上所有数字,输出结果是 6×6 过滤器数量。
所以 1×1 卷积可以从根本上理解为对这 32 个不同的位置都应用一个全连接层,全连接层的作用是输入 32 个数字,输出结果是 6×6×#filters(过滤器数量),以便在输入层上实施一个非平凡( non-trivial)计算。
这种方法通常称为 1×1 卷积,有时也被称为 Network in Network。
假设这是一个 28×28×192 的输入层,你可以使用池化层压缩它的高度和宽度,这个过程我们很清楚。但如果通道数量很大,该如何把它压缩为 28×28×32 维度的层呢?你可以用 32
个大小为 1×1 的过滤器,严格来讲每个过滤器大小都是 1×1×192 维,因为过滤器中通道数
必须与输入层中通道的数量保持一致。但是你使用了 32 个过滤器,输出层为 28×28×32,这就是压缩通道数的方法,对于池化层我只是压缩了这些层的高度和宽度。
当然如果你想保持通道数 192 不变,这也是可行的, 1×1 卷积只是添加了非线性函数,当然也可以让网络学习更复杂的函数,比如,我们再添加一层,其输入为 28×28×192,输出为 28×28×192。
1×1 卷积层就是这样实现了一些重要功能的(doing something pretty non-trivial),它给神经网络添加了一个非线性函数,从而减少或保持输入层中的通道数量不变,当然如果你愿意,也可以增加通道数量。