1-10 改善你的模型的表现

改善你的模型的表现(Improving your model performance)

想要让一个监督学习算法达到实用,基本上希望或者假设你可以完成两件事情。

首先,你的算法对训练集的拟合很好,这可以看成是你能做到可避免偏差很低。还有第二件事你可以做好的是,在训练集中做得很好,然后推广到开发集和测试集也很好,这就是说方差不是太大。

总结一下前几段视频我们见到的步骤,如果你想提升机器学习系统的性能,我建议你们看看训练错误率和贝叶斯错误率估计值之间的距离,让你知道可避免偏差有多大。换句话说,就是你觉得还能做多好,你对训练集的优化还有多少空间。然后看看你的开发错误率和训练错误率之间的距离,就知道你的方差问题有多大。换句话说,你应该做多少努力让你的算法表现能够从训练集推广到开发集,算法是没有在开发集上训练的。

如果你想用尽一切办法减少可避免偏差,我建议试试这样的策略:比如使用规模更大的模型,这样算法在训练集上的表现会更好,或者训练更久。使用更好的优化算法,比如说加入 momentum 或者 RMSprop,或者使用更好的算法,比如 Adam。你还可以试试寻找更好的新神经网络架构,或者说更好的超参数。这些手段包罗万有,你可以改变激活函数,改变层数或者隐藏单位数,虽然你这么做可能会让模型规模变大。或者试用其他模型,其他架构,如循环神经网络和卷积神经网络。在之后的课程里我们会详细介绍的,新的神经网络架构能否更好地拟合你的训练集,有时也很难预先判断,但有时换架构可能会得到好得多的结果。

另外当你发现方差是个问题时,你可以试用很多技巧,包括以下这些:你可以收集更多数据,因为收集更多数据去训练可以帮你更好地推广到系统看不到的开发集数据。你可以尝试正则化,包括L2正则化,dropout 正则化或者我们在之前课程中提到的数据增强。同时你也可以试用不同的神经网络架构,超参数搜索,看看能不能帮助你,找到一个更适合你的问题的神经网络架构。

posted @ 2018-10-23 08:42  刘-皇叔  阅读(356)  评论(0编辑  收藏  举报