import argparse
import os
import imageio
import cv2
import numpy as np
import time
from concurrent.futures import ThreadPoolExecutor,wait,ALL_COMPLETED,FIRST_COMPLETED, as_completed
'''
python mask2rgbaThread.py --image_path /home/***/color/%04d.jpg \
--mask_path /home/***/mask/%04d.png \
--n 38 \
--save_path /home/***/rgbaThread/%04d.png
'''
def parse_args():
parser = argparse.ArgumentParser(description="Run neural graphics primitives testbed with additional configuration & output options")
# parser.add_argument("--camera_intrinsics", default="data/camera-intrinsics.txt", help="camera-intrinsics")
parser.add_argument("--n", default="10", type=int,help="Set render mode.")
# parser.add_argument("--depth_path", default="data/frame-%06d.depth.png", help="depth_path")
parser.add_argument("--image_path", default="data/frame-%06d.color.jpg", help="image_path")
parser.add_argument("--mask_path", default="mydata/mask/%04d.png", help="image_path")
parser.add_argument("--debug_path", default="mydata/mask/%04d.png", help="image_path")
parser.add_argument("--save_path", default="data/frame-%06d.png", help="Load this snapshot before training. recommended extension: .msgpack")
args = parser.parse_args()
return args
def rgb2rgbd(imgPath, maskPath, savePath, index):
mask_im1 = cv2.imread(maskPath%(index))
_, mask_im = cv2.threshold(mask_im1, 1, 255, cv2.THRESH_BINARY)
color_im = cv2.cvtColor(cv2.imread(imgPath%(index)), cv2.COLOR_RGB2BGR)
img_result = np.zeros((color_im.shape[0], color_im.shape[1],4), dtype=np.uint8)
img_result[:,:, 0:3] = cv2.bitwise_and(color_im, mask_im)
img_result[:,:,3]=mask_im[:,:,0]
imageio.imwrite(savePath%(index), img_result)
# cv2.namedWindow("result",cv2.WINDOW_NORMAL)
# cv2.imshow("result",img_result)
# # cv2.waitKey(0)
if __name__ == "__main__":
args = parse_args()
n_imgs = args.n
start_time = time.time() # 程序开始时间
savePath = args.save_path[0:args.save_path.rfind('/')]
# print(savePath)
if not os.path.exists(savePath):
os.makedirs(savePath)
# 创建一个最大容纳数量为2的线程池
# max_workers=2
with ThreadPoolExecutor() as pool:
print("pool._max_workers:",pool._max_workers)
all_task=[pool.submit(rgb2rgbd, args.image_path, args.mask_path,args.save_path, i) for i in range(args.n)]
# 主线程等待所有子线程完成
wait(all_task, return_when=ALL_COMPLETED)
print("----complete-----")
end_time = time.time() # 程序结束时间
run_time = end_time - start_time # 程序的运行时间,单位为秒
print("all time:", run_time, " s")