数学公式书写

在“HTML源码编辑器”上插入下面代码,就可以显示下面的公式:

<p>
<script type="mce-text/x-mathjax-config">// <![CDATA[
MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}});
// ]]></script>
<script type="mce-text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">// <![CDATA[
// ]]></script>
</p>

<p>
When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are $$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$
</p>
<p>
Stokes’ Theorem is pretty cool. Let $\mathbf{F}:\mathbb{R}^3\rightarrow\mathbb{R}^3$ be a vector field and let $\mathbf{\Sigma}$ be a surface in $\mathbb{R}^3$. Then</p>
<p>
\[\int_{\Sigma} \nabla\times\mathbf{F}\cdot d\;\mathbf{\Sigma} = \oint_{\partial\Sigma}\mathbf{F}\cdot d\;\mathbf{r}\]
</p>
View Code

When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are $$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$

Stokes’ Theorem is pretty cool. Let $\mathbf{F}:\mathbb{R}^3\rightarrow\mathbb{R}^3$ be a vector field and let $\mathbf{\Sigma}$ be a surface in $\mathbb{R}^3$. Then

\[\int_{\Sigma} \nabla\times\mathbf{F}\cdot d\;\mathbf{\Sigma} = \oint_{\partial\Sigma}\mathbf{F}\cdot d\;\mathbf{r}\]

posted @ 2013-07-14 14:39  我是不知道  阅读(959)  评论(0编辑  收藏  举报