数学公式书写
在“HTML源码编辑器”上插入下面代码,就可以显示下面的公式:
<p> <script type="mce-text/x-mathjax-config">// <![CDATA[ MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}}); // ]]></script> <script type="mce-text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">// <![CDATA[ // ]]></script> </p> <p> When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are $$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$ </p> <p> Stokes’ Theorem is pretty cool. Let $\mathbf{F}:\mathbb{R}^3\rightarrow\mathbb{R}^3$ be a vector field and let $\mathbf{\Sigma}$ be a surface in $\mathbb{R}^3$. Then</p> <p> \[\int_{\Sigma} \nabla\times\mathbf{F}\cdot d\;\mathbf{\Sigma} = \oint_{\partial\Sigma}\mathbf{F}\cdot d\;\mathbf{r}\] </p>
When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are $$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$
Stokes’ Theorem is pretty cool. Let $\mathbf{F}:\mathbb{R}^3\rightarrow\mathbb{R}^3$ be a vector field and let $\mathbf{\Sigma}$ be a surface in $\mathbb{R}^3$. Then
\[\int_{\Sigma} \nabla\times\mathbf{F}\cdot d\;\mathbf{\Sigma} = \oint_{\partial\Sigma}\mathbf{F}\cdot d\;\mathbf{r}\]