C#解leetcode 106. Construct Binary Tree from Inorder and Postorder Traversal

Given inorder and postorder traversal of a tree, construct the binary tree.

Note:
You may assume that duplicates do not exist in the tree.

 

这个题目是给你一棵树的中序遍历和后序遍历,让你将这棵树表示出来。其中可以假设在树中没有重复的元素。

当做完这个题之后,建议去做做第105题,跟这道题类似。

 

分析:这个解法的基本思想是:我们有两个数组,分别是IN和POST.后序遍历暗示POSR[end](也就是POST数组的最后一个元素)是根节点。之后我们可以在IN中寻找POST[END].假设我们找到了IN[5].现在我们就能够知道IN[5]是根节点,然后IN[0]到IN[4]是左子树,IN[6]到最后是右子树。然后我们可以通过递归的方式处理这个数组。

代码如下,其中改代码击败了100%的C#提交者:

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     public int val;
 *     public TreeNode left;
 *     public TreeNode right;
 *     public TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
    public TreeNode BuildTree(int[] inorder, int[] postorder) {
        return binaryTree(postorder.Length-1,0,inorder.Length-1,inorder,postorder);
    }
    
    
    
    
    public TreeNode binaryTree(int postEnd,int inStart,int inEnd,int[] inorder, int[] postorder)
    {
        if(postEnd<0||inStart>inEnd)
           return null;
        
        
        int inindex=0;
        TreeNode root=new TreeNode(postorder[postEnd]);
        
        for(int i=inStart;i<=inEnd;i++)
        {
            if(inorder[i]==postorder[postEnd])
            {
                inindex=i;
                break;
            }
        }
        
        
        root.left=binaryTree(postEnd-(inEnd-inindex)-1,inStart,inindex-1,inorder,postorder);
        root.right=binaryTree(postEnd-1,inindex+1,inEnd,inorder,postorder);
        
        return root;
        
    }
}

最最关键的是确定函数的实参的时候,一定不能弄错。 

root.left=binaryTree(postEnd-(inEnd-inindex)-1,inStart,inindex-1,inorder,postorder);

中的inEnd-inindex代表了右子树的元素数,为了求得左子树的最后一位,应该将该元素减去。

posted on 2016-03-22 20:51  狂奔的蜗牛163  阅读(377)  评论(0编辑  收藏  举报