Python3解leetcode Count Primes

问题描述:

 

Count the number of prime numbers less than a non-negative number, n.

 

Example:

 

Input: 10
Output: 4
Explanation: There are 4 prime numbers less than 10, they are 2, 3, 5, 7.

 

思路:

1、最暴力的方法就是循环遍历,用两个for循环嵌套实现,但是整个代码运行时间太长,提交通不过

2、采用'Sieve of Eratosthenes'方法,该方法的思路是:

①质数是除了1和本身外,不被任何数整除,那么任何一个质数的倍数都不会是质数

②我们知道最小的质数为2,因此从2开始遍历到n-1。

③2的所有倍数都不是质数,所以将2的所有倍数都标记为非质数。

④依次遍历下一个元素,下一个标记为质数的元素一定是质数。因为如果该元素是非质数的话,一定能被除了1和本身外的某一个数x整除,即该数是x的整数倍,而x一定是我们曾经遍历过的数;而依据第三步,我们所有遍历过的数的倍数都被标记为非质数了,我们不可能遍历到非质数,因而相互矛盾;综上即该元素一定是质数

⑤遍历完成后,能够标记所有的数字是否是质数

 

代码:

 

class Solution:
    def countPrimes(self, n: int) -> int:
        count,flag = 0,[True]*(n) #1代表质数,0代表非质数
        for i in range(2,n):#从2开始遍历,i代表当前第一个数,i代表这个数所在位置
            if flag[i]:#如果当前位置判定为True的话
                count += 1
                for j in range(i*i,n,i):#将该质数的所有倍数都设定为False,即非质数
                    flag[j] = False         
        return count
    

 

在循环中尽量不要增加计算,哪怕是加减计算,任何计算量的增加都会增加运行时间,导致提交结果运行时间非常长,结果很差;因而牺牲一点空间,换取时间的大幅缩短也是非常值得的

 

posted on 2019-07-09 10:13  狂奔的蜗牛163  阅读(235)  评论(0编辑  收藏  举报