关闭页面特效

图的基本概念

图的知识点大全

名称 定义 备注
边是顶点的无序对 *
弧是顶点的有序对 *
顶点的度 全部顶点的度等于边的二倍 无向图
顶点的度 全部顶点的度等于入度+出度,入度=出度=边数 有向图
连通 v到w有路径存在,v和w就是连通的 无向图
连通图 任意两个顶点都是连通的 无向图
连通分量 无向图中的极大连通子图 无向图
* * *
强连通 v到w和w到v都有路径,则是强连通 有向图
强连通图 任意一对顶点都是强连通的 有向图
完全图 边数:无向图:n(n-1)/2;有向图:n(n-1) *
子图 G=(V,E)和G'=(V',E'),V'是V的子集且E'是E的子集 *
生成树 包含图中全部顶点的一个极小连通子图 *
生成树林 在非连通图中,连通分量的生成树 *
简单路径 顶点不重复出现的路径 *

1|01~图的基本概念


有向图

copy若E是有向边(简称弧)的有限集合时,则G为有向图。弧是顶点的有序对,记为<v,w>,
其中 v,w 是顶点,v 是弧尾,w 是弧头。称为从顶点v到顶点w的弧。

有向图

无向图

copy若E是无向边(简称边)的有限集合时,则G为无向图。边是顶点的无序对,记为 (v,w) 或(w,v) ,
且有 (v,w) =(w,v) 。其中 v,w 是顶点。

无向图

简单图

copy简单图满足以下两条内容:'①不存在重复边'   '②不存在顶点到自身的边'   则称为'简单图'
   .

完全图

copy无向图中任意两个顶点之间都存在边【n(n-1)/2】,称为'无向完全图'
有向图中任意两个顶点之间都存在方向向反的两条弧【n(n-1)】,称为'有向完全图'


0|1连通、连通图、连通分量


copy在无向图中,两顶点有路径存在,就称为'连通的'。
若图中任意两顶点都连通,同此图为'连通图'。
无向图中的极大连通子图称为'连通分量''极大连通子图''无向图'的连通分量,'极大'-->要求该连通子图包含其所有的边。
'极小连通子图'是既要保持图的连通又要使得边数'最少'的子图。

强连通

copy在有向图中,两顶点'两个方向'都有路径,两顶点称为强连通。若任一顶点都是强连通的,称为'强连通'。
有向图中极大强连通子图为有向图的强连通分量。

生成树和生成森林

copy连通图的生成树是包含图中全部顶点的一个极小连通子图,若图中有n个顶点,则生成树有'n-1条边'。
所以对于生成树而言,若砍去一条边,就会变成'非连通图'

顶点的度、入度和出度

copy'无向图',顶点的边数为度,度数之和是'顶点边数的2倍'
'有向图',入度是以顶点为终点,出度相反。有向图的全部顶点'入度之和'等于'出度之和'且等于'边数'。
顶点的度等于入度与出度之和。

简单路径、简单回路

copy在路径序列中 顶点'不重复出现'的路径称为简单路径。
'除第一个顶点和最后一个顶点外',其余顶点不重复出现的回路称为简单回路。

由于时间有限,写的不好请见谅,理解万岁(:

以上图片均来自王道数据结构书中

仅为个人复习方便所写,如有侵权立即删除!


__EOF__

作  者xiaoff
出  处https://www.cnblogs.com/xiaofff/p/13278773.html
关于博主:编程路上的小学生,热爱技术,喜欢专研。评论和私信会在第一时间回复。或者直接私信我。
版权声明:署名 - 非商业性使用 - 禁止演绎,协议普通文本 | 协议法律文本
声援博主:如果您觉得文章对您有帮助,可以点击文章右下角推荐一下。您的鼓励是博主的最大动力!

posted @   xiaoff  阅读(618)  评论(0编辑  收藏  举报
编辑推荐:
· 开发中对象命名的一点思考
· .NET Core内存结构体系(Windows环境)底层原理浅谈
· C# 深度学习:对抗生成网络(GAN)训练头像生成模型
· .NET 适配 HarmonyOS 进展
· .NET 进程 stackoverflow异常后,还可以接收 TCP 连接请求吗?
阅读排行:
· 本地部署 DeepSeek:小白也能轻松搞定!
· 基于DeepSeek R1 满血版大模型的个人知识库,回答都源自对你专属文件的深度学习。
· 在缓慢中沉淀,在挑战中重生!2024个人总结!
· Tinyfox 简易教程-1:Hello World!
· 大人,时代变了! 赶快把自有业务的本地AI“模型”训练起来!
点击右上角即可分享
微信分享提示