1107-卷积神经网络

卷积神经网络

CNN

 

 padding

 

stride 

 

 MaxPooling

 

 CNN

 

 

 

 

代码:

from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim

batch_size=64
transform=transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307,),(0.3081,))
])

train_dataset=datasets.MNIST(root='../dataset/mnist',train=True,download=True,transform=transform)
train_loader=DataLoader(train_dataset,shuffle=True,batch_size=batch_size)

test_dataset=datasets.MNIST(root='../dataset/mnist',train=False,download=True,transform=transform)
test_loader=DataLoader(test_dataset,shuffle=True,batch_size=batch_size)

class Net(torch.nn.Module):
    def __init__(self):
        super(Net,self).__init__()
        self.conv1=torch.nn.Conv2d(1,10,kernel_size=5)
        self.conv2=torch.nn.Conv2d(10,20,kernel_size=5)
        self.pooling=torch.nn.MaxPool2d(2)
        self.fc=torch.nn.Linear(320,10)

    def forward(self,x):
        batch_size=x.size(0)
        x=self.pooling(torch.relu(self.conv1(x)))
        x = self.pooling(torch.relu(self.conv2(x)))
        x=x.view(batch_size,-1)
        x=self.fc(x)
        return x

model=Net()
device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)

criterion=torch.nn.CrossEntropyLoss()
optimizer=optim.SGD(model.parameters(),lr=0.01,momentum=0.5)

def train(epoch):
    running_loss=0.0
    for batch_idx,data in enumerate(train_loader,0):
        inputs,target=data
        inputs=inputs.to(device)
        target=target.to(device)
        optimizer.zero_grad()

        outputs=model(inputs)
        loss=criterion(outputs,target)
        loss.backward()
        optimizer.step()

        running_loss+=loss.item()
        if batch_idx%300==299:
            print('[%d, %5d] loss: %.3f'% (epoch+1,batch_size+1,running_loss/2000))
            running_loss=0.0
def test():
    correct=0
    total=0
    with torch.no_grad():
        for data in test_loader:
            images,labels=data
            images,labels=images.to(device),labels.to(device)
            outputs=model(images)
            _,predicted=torch.max(outputs.data,dim=1)
            total+=labels.size(0)
            correct+=(predicted == labels).sum().item()
        accuracy.append(correct/total)
        print('Accuracy on test set : %d %% [%d/%d]' % (100*correct/total,correct,total))

import matplotlib.pyplot as plt

if __name__ == '__main__':
    epoch_x=[]
    accuracy=[]
    for epoch in range(10):
        train(epoch)
        test()
        epoch_x.append(epoch)
    fig=plt.figure()
    ax=fig.add_subplot(1,1,1)
    ax.set_xlabel("epoch")
    ax.set_ylabel("Accuracy")
    ax.plot(epoch_x,accuracy)
    plt.show()

结果:

 

 Exercise

 

 代码:

from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
import torch

batch_size=64
transform=transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307,),(0.3081,))
])

train_dataset=datasets.MNIST(root='../dataset/mnist',train=True,download=True,transform=transform)
train_loader=DataLoader(train_dataset,shuffle=True,batch_size=batch_size)

test_dataset=datasets.MNIST(root='../dataset/mnist',train=False,download=True,transform=transform)
test_loader=DataLoader(test_dataset,shuffle=True,batch_size=batch_size)

class Net(torch.nn.Module):
    def __init__(self):
        super(Net,self).__init__()
        self.conv1=torch.nn.Conv2d(1,10,kernel_size=5)
        self.conv2=torch.nn.Conv2d(10,20,kernel_size=3)
        self.conv3 = torch.nn.Conv2d(20,40, kernel_size=3)
        self.pooling=torch.nn.MaxPool2d(2)
        self.pooling2 = torch.nn.MaxPool2d(3)
        self.l1=torch.nn.Linear(40,30)
        self.l2=torch.nn.Linear(30,20)
        self.l3=torch.nn.Linear(20,10)

    def forward(self,x):
        batch_size=x.size(0)
        x=self.pooling(torch.relu(self.conv1(x)))
        x = self.pooling(torch.relu(self.conv2(x)))
        x = self.pooling2(torch.relu(self.conv3(x)))
        x=x.view(batch_size,-1)
        x=self.l1(x)
        x =self.l2(x)
        return self.l3(x)

model=Net()
device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)

criterion=torch.nn.CrossEntropyLoss()
optimizer=optim.SGD(model.parameters(),lr=0.01,momentum=0.5)

def train(epoch):
    running_loss=0.0
    for batch_idx,data in enumerate(train_loader,0):
        inputs,target=data
        inputs=inputs.to(device)
        target=target.to(device)
        optimizer.zero_grad()

        outputs=model(inputs)
        loss=criterion(outputs,target)
        loss.backward()
        optimizer.step()

        running_loss+=loss.item()
        if batch_idx%300==299:
            print('[%d, %5d] loss: %.3f'% (epoch+1,batch_size+1,running_loss/300))
            running_loss=0.0
def test():
    correct=0
    total=0
    with torch.no_grad():
        for data in test_loader:
            images,labels=data
            images,labels=images.to(device),labels.to(device)
            outputs=model(images)
            _,predicted=torch.max(outputs.data,dim=1)
            total+=labels.size(0)
            correct+=(predicted == labels).sum().item()
        accuracy.append(correct/total)
        print('Accuracy on test set : %d %% [%d/%d]' % (100*correct/total,correct,total))

import matplotlib.pyplot as plt

if __name__ == '__main__':
    epoch_x=[]
    accuracy=[]
    for epoch in range(10):
        train(epoch)
        test()
        epoch_x.append(epoch)
    fig=plt.figure()
    ax=fig.add_subplot(1,1,1)
    ax.set_xlabel("epoch")
    ax.set_ylabel("Accuracy")
    ax.plot(epoch_x,accuracy)
    plt.show()

结果:

 

 

 

posted @ 2021-11-07 22:59  清风紫雪  阅读(94)  评论(0编辑  收藏  举报