1107-卷积神经网络
卷积神经网络
CNN
padding
stride
MaxPooling
CNN
代码:
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
batch_size=64
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,),(0.3081,))
])
train_dataset=datasets.MNIST(root='../dataset/mnist',train=True,download=True,transform=transform)
train_loader=DataLoader(train_dataset,shuffle=True,batch_size=batch_size)
test_dataset=datasets.MNIST(root='../dataset/mnist',train=False,download=True,transform=transform)
test_loader=DataLoader(test_dataset,shuffle=True,batch_size=batch_size)
class Net(torch.nn.Module):
def __init__(self):
super(Net,self).__init__()
self.conv1=torch.nn.Conv2d(1,10,kernel_size=5)
self.conv2=torch.nn.Conv2d(10,20,kernel_size=5)
self.pooling=torch.nn.MaxPool2d(2)
self.fc=torch.nn.Linear(320,10)
def forward(self,x):
batch_size=x.size(0)
x=self.pooling(torch.relu(self.conv1(x)))
x = self.pooling(torch.relu(self.conv2(x)))
x=x.view(batch_size,-1)
x=self.fc(x)
return x
model=Net()
device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
criterion=torch.nn.CrossEntropyLoss()
optimizer=optim.SGD(model.parameters(),lr=0.01,momentum=0.5)
def train(epoch):
running_loss=0.0
for batch_idx,data in enumerate(train_loader,0):
inputs,target=data
inputs=inputs.to(device)
target=target.to(device)
optimizer.zero_grad()
outputs=model(inputs)
loss=criterion(outputs,target)
loss.backward()
optimizer.step()
running_loss+=loss.item()
if batch_idx%300==299:
print('[%d, %5d] loss: %.3f'% (epoch+1,batch_size+1,running_loss/2000))
running_loss=0.0
def test():
correct=0
total=0
with torch.no_grad():
for data in test_loader:
images,labels=data
images,labels=images.to(device),labels.to(device)
outputs=model(images)
_,predicted=torch.max(outputs.data,dim=1)
total+=labels.size(0)
correct+=(predicted == labels).sum().item()
accuracy.append(correct/total)
print('Accuracy on test set : %d %% [%d/%d]' % (100*correct/total,correct,total))
import matplotlib.pyplot as plt
if __name__ == '__main__':
epoch_x=[]
accuracy=[]
for epoch in range(10):
train(epoch)
test()
epoch_x.append(epoch)
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
ax.set_xlabel("epoch")
ax.set_ylabel("Accuracy")
ax.plot(epoch_x,accuracy)
plt.show()
结果:
Exercise
代码:
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
import torch
batch_size=64
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,),(0.3081,))
])
train_dataset=datasets.MNIST(root='../dataset/mnist',train=True,download=True,transform=transform)
train_loader=DataLoader(train_dataset,shuffle=True,batch_size=batch_size)
test_dataset=datasets.MNIST(root='../dataset/mnist',train=False,download=True,transform=transform)
test_loader=DataLoader(test_dataset,shuffle=True,batch_size=batch_size)
class Net(torch.nn.Module):
def __init__(self):
super(Net,self).__init__()
self.conv1=torch.nn.Conv2d(1,10,kernel_size=5)
self.conv2=torch.nn.Conv2d(10,20,kernel_size=3)
self.conv3 = torch.nn.Conv2d(20,40, kernel_size=3)
self.pooling=torch.nn.MaxPool2d(2)
self.pooling2 = torch.nn.MaxPool2d(3)
self.l1=torch.nn.Linear(40,30)
self.l2=torch.nn.Linear(30,20)
self.l3=torch.nn.Linear(20,10)
def forward(self,x):
batch_size=x.size(0)
x=self.pooling(torch.relu(self.conv1(x)))
x = self.pooling(torch.relu(self.conv2(x)))
x = self.pooling2(torch.relu(self.conv3(x)))
x=x.view(batch_size,-1)
x=self.l1(x)
x =self.l2(x)
return self.l3(x)
model=Net()
device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
criterion=torch.nn.CrossEntropyLoss()
optimizer=optim.SGD(model.parameters(),lr=0.01,momentum=0.5)
def train(epoch):
running_loss=0.0
for batch_idx,data in enumerate(train_loader,0):
inputs,target=data
inputs=inputs.to(device)
target=target.to(device)
optimizer.zero_grad()
outputs=model(inputs)
loss=criterion(outputs,target)
loss.backward()
optimizer.step()
running_loss+=loss.item()
if batch_idx%300==299:
print('[%d, %5d] loss: %.3f'% (epoch+1,batch_size+1,running_loss/300))
running_loss=0.0
def test():
correct=0
total=0
with torch.no_grad():
for data in test_loader:
images,labels=data
images,labels=images.to(device),labels.to(device)
outputs=model(images)
_,predicted=torch.max(outputs.data,dim=1)
total+=labels.size(0)
correct+=(predicted == labels).sum().item()
accuracy.append(correct/total)
print('Accuracy on test set : %d %% [%d/%d]' % (100*correct/total,correct,total))
import matplotlib.pyplot as plt
if __name__ == '__main__':
epoch_x=[]
accuracy=[]
for epoch in range(10):
train(epoch)
test()
epoch_x.append(epoch)
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
ax.set_xlabel("epoch")
ax.set_ylabel("Accuracy")
ax.plot(epoch_x,accuracy)
plt.show()
结果: