#C++初学记录(ACM8-6-cf-f题)
F. Vanya and Label
While walking down the street Vanya saw a label "Hide&Seek". Because he is a programmer, he used & as a bitwise AND for these two words represented as a integers in base 64 and got new word. Now Vanya thinks of some string s and wants to know the number of pairs of words of length |s| (length of s), such that their bitwise AND is equal to s. As this number can be large, output it modulo 1e9 + 7.To represent the string as a number in numeral system with base 64 Vanya uses the following rules:
digits from '0' to '9' correspond to integers from 0 to 9;
letters from 'A' to 'Z' correspond to integers from 10 to 35;
letters from 'a' to 'z' correspond to integers from 36 to 61;
letter '-' correspond to integer 62;
letter '_' correspond to integer 63;
In the first sample, there are 3 possible solutions:
**
z&_ = 61&63 = 61 = z
_&z = 63&61 = 61 = z
z&z = 61&61 = 61 = z**
正确代码
#include<bits/stdc++.h>
using namespace std;
#define modd 1000000007
int main(){
char a[100006];
cin>>a;
long long lena=strlen(a);
long long ans=1;
long long n;
for(int i=0;i<lena;i++){
n=0;
if(a[i]>='0'&&a[i]<='9')
n=a[i]-'0';
if(a[i]>='A'&&a[i]<='Z')
n=a[i]-'A'+10;
if(a[i]>='a'&&a[i]<='z')
n=a[i]-'a'+36;
if(a[i]=='-')
n=62;
if(a[i]=='_')
n=63;
for(int j=0;j<6;j++){
if(((n>>j)&1)==0){
ans=(ans*3)%modd;
}
}
}
cout<<ans<<endl;
return 0;
}
题目理解
给出一个字符串,字符串中可能含有1-9的数字,a-z的字母,A-Z的字母,然后将他们全部转化成题目给出的编码,得到编码后,通过程序进行判断有多少个字符组合通过AND(&)符运算后不会改变字符串中字符的编码。
相关知识点
本题完成需要读懂题目,判断字符串中编码不仅仅是将其化为ascll码,而是要根据题意进行初始编码后再进行化为二进制,其次二进制的判断是位移运算符与AND运算符结合完成的,具体代码为
for(int j=0;j<6;j++){
if(((n>>j)&1)==0){
ans=(ans*3)%modd;
}
}
由题意得出最大代码为63的“_”,即不超过64位,因此二进制可以化为六位数正好小于2^6,到此代码编写与理解完成。