人脸识别调研

项目列表

开源项目

语言/环境

准确率

(on Labeled Faces in the Wild)

备注

ageitgey/face_recognition

Python, Dlib

99.38%

Docs

DFace

Python

   

facenet

TensorFlow

99.2%

https://mp.weixin.qq.com/s/1kgbYScIujSjCRvfPGw0tg

VGG Face Descriptor

 

Caffe, Torch

99.13%

 

SeetaFace Engine

C++

97.1%

中科院山世光

openbiometrics

C/C++

   

其他

https://skybiometry.com/pricing/

https://www.betafaceapi.com/wpa/index.php/pricing

https://facedetection.com/software/

人脸识别大赛

http://www.msceleb.org/leaderboard/iccvworkshop-c1

ageitgey/face_recognition 项目调研

项目地址

https://github.com/ageitgey/face_recognition

 

性能

99.38% on the Labeled Faces in the Wild benchmark

 

环境

macOS/Linux

Python 3.3+/Python 2.7

dlib(a C++ ML toolkit, https://github.com/davisking/dlib)

 

Python Module API Docs

https://face-recognition.readthedocs.io

 

安装

git clone 
https://github.com/davisking/dlib.git

sudo apt-get install cmake
sudo apt-get install libboost-python-dev
sudo python setup.py install
pip2 install face_recognition

 

使用 (Recognize faces)

 

import face_recognition
 
picture_of_me = face_recognition.load_image_file("me.jpg")
my_face_encoding = face_recognition.face_encodings(picture_of_me)[0]
 
# my_face_encoding now contains a universal 'encoding' of my facial features that can be compared to any other picture of a face!
 
unknown_picture = face_recognition.load_image_file("unknown.jpg")
unknown_face_encoding = face_recognition.face_encodings(unknown_picture)[0]
 
results = face_recognition.compare_faces([my_face_encoding], unknown_face_encoding)

 

总结:

1. 后续需要解决如何部署在服务器上,Docker?

2. 1:1 识别性能很好

3. 1:N 识别需要事先注册并存储face_encodings,然后遍历比对,性能有待测试

posted @   泉水姐姐。  阅读(18)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
点击右上角即可分享
微信分享提示